$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

생활사 기반 모델을 이용한 동해 명태(Gadus chalcogrammus)의 개체군 평가
A Life Stage-based Model for Assessing the Walleye Pollock Gadus chalcogrammus Population in the East Sea 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.50 no.1, 2017년, pp.65 - 76  

김규한 (부경대학교 자원생물학과) ,  손명호 (국립수산과학원 제주수산연구소) ,  현상윤 (부경대학교 자원생물학과)

Abstract AI-Helper 아이콘AI-Helper

Since the late 1990s, walleye pollock Gadus chalcogrammus fisheries in Korean waters have been considered collapsed. Although many fisheries scientists suspect that the collapse might have been triggered by overexploitation of juvenile pollock or environmental changes, such conjectures have been nei...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 기후변화와 가입 남획) 중 어떤 것이 명태자원의 붕괴와 더욱 밀접한 관련이 있는지도 밝혀지지 않았다. 따라서, 본 연구에서는 두 원인과 명태 집단간의 인과관계가 아닌 상관관계에 초점을 두어 어획압력과 동해 해양환경의 변동이 명태자원의 붕괴와 어떤 연관성이 있었는지 밝히고자 하였다. 분석 방법으로는 일반화선형모형(Generalized linear model:GLM)을 이용하였으며 모델의 변수로는 이용가능한 자료들 중, 명태 개체군과 생태학적 연관성이 있었을 것으로 판단되는 환경요인들을 선별하였다.
  • (1978)에의해 추정된 von Bertalanffy성장식이 결정론적인 모델(deterministic model)이고, 이것을 자료가 수집된 전 년도에 걸쳐 적용한 점은 명태 성장률의 분산을 고려하지 않았을 뿐만 아니라 이들의 성장률이 매년 동일할 것이라는 다소 비현실적인 가정이 전제되어 있는 것이다. 또한 이 성장식의 추정에 이용된 명태가 상업어업으로 어획되었다는 사실은 추정치가 어획선택성에 의해 편향되었을 가능성을 제시한다. 실제로 Kooka (2012) 에 의해 추정된 동해 명태의 von Bertalanffy성장식과 Park et al.
  • 모든 통계모델이 가지는 공통적인 문제는 항상 모델의 결과에 불확실성(uncertainty)이 내포되어 있다는 것이다. 이러한 불확실성에 대처하는 가장 확실한 방법은 자료의 양과 질을 향상시키는 것인데 본 연구는 이미 수집된 과거 자료를 이용하였으므로 이 문제점에 노출되어 있다. 특히 CPUE가 과학조사 (survey)에 의한 것이 아닌 상업어업을 통해 수집되었으므로 이자료가 온전히 동해 명태의 개체군크기를 대표한다고 보기에는 무리가 있으며, 또한 반응변수로 이용된 명태 미성어의 CPUE 자료의 수가 총 25개로 그 수가 적었기 때문에 모델의 결과가 자료의 변화에 민감하였다.

가설 설정

  • 3). 또한 북쪽의 북한한류와 남쪽의 동한 난류가 만나는 아극전선 형성지역에 속하기 때문에(Kim and Yoo, 2007) 수온의 변동이 타 해역에 비해 극심하므로, 70번 해구의 수온변동이 명태의 생존률과 가장 큰 연관성이 있었을 것으로 가정하였다
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
명태의 적정 서식 수온 범위는? 이는 비교적 따뜻해진 동해의 수온이 냉수성 어종인 명태의 서식에 악영향을 미쳤을 것이라는 추측을 이끌었으나 동해 명태의 서식수온과 수심에 관한 정밀한 연구가 수행되지 않았기 때문에 이를 뒷받침할 과학적 근거는 미미한 실정이다. 현재까지 동해 명태의 서식수온과 수심에 관하여 보고된 연구 중일부를 살펴보면, Nishimura (1969)가 동해 명태의 적정 서식 수온 범위를 2-5°C이라 하였으며 약 200 m 수심에서 형성되는 영구 수온약층(permanent thermocline) 아래의 수온이 약 5°C 이므로 이들의 서식 수심은 200 m보다 깊을 것이라고 하였다. 그러나 Gong and Zhang (1986)은 동해연안에 서식하는 명태의 서식수심은 계절별로 다르며 이 또한 동한난류의 강세에 따라 변동된다고 하였고 Kooka et al.
우리나라 동해의 명태 어업현황은? 우리나라 동해의 명태(Gadus chalcogrammus)어업은 1990 년대 후반 이후로 붕괴 된 것으로 여겨지고 있다. 1981년 약 17 만톤에 이르던 명태 어획량이 1995년에는 채 1만톤이 되지 않았으며 이후, 지속적인 감소를 거쳐 2008년의 어획량이 1톤 미만이였다는 사실은 동해 명태자원의 고갈을 시사하였다. 이러한 명태자원의 고갈 원인으로는 기후변화에 의한 동해의 해양 환경 변화와 노가리라 불리는 소형명태의 무분별한 어획이 주로 거론되고 있으나 아직 정확한 원인은 밝혀지지 않았다.
명태의 서식수심과 수온약층과의 관계는? 이는 비교적 따뜻해진 동해의 수온이 냉수성 어종인 명태의 서식에 악영향을 미쳤을 것이라는 추측을 이끌었으나 동해 명태의 서식수온과 수심에 관한 정밀한 연구가 수행되지 않았기 때문에 이를 뒷받침할 과학적 근거는 미미한 실정이다. 현재까지 동해 명태의 서식수온과 수심에 관하여 보고된 연구 중일부를 살펴보면, Nishimura (1969)가 동해 명태의 적정 서식 수온 범위를 2-5°C이라 하였으며 약 200 m 수심에서 형성되는 영구 수온약층(permanent thermocline) 아래의 수온이 약 5°C 이므로 이들의 서식 수심은 200 m보다 깊을 것이라고 하였다. 그러나 Gong and Zhang (1986)은 동해연안에 서식하는 명태의 서식수심은 계절별로 다르며 이 또한 동한난류의 강세에 따라 변동된다고 하였고 Kooka et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (42)

  1. Afshartous D and Preston RA. 2011. Key results of interaction models with centering. J Stat Educ 19, 1-24. 

  2. Breusch TS and Pagan AR. 1979. A simple test for heteroscedasticity and random coefficient variation. Econometrica 47, 1287-1294. http://dx.doi.org/10.2307/1911963. 

  3. Cook RD and Weisberg S. 1982. Residuals and influence in regression. Chapman and Hall, London, U.K., 102-156. 

  4. Cushing D. 1969. The regularity of the spawning season of some fishes. ICES J Mar Sci 33, 81-92. http://dx.doi.org/10.1093/icesjms/33.1.81. 

  5. Dobson AJ and Barnett A. 2008. An introduction to generalized linear models. CRC press, Boca Raton, U.S.A., 80-88. 

  6. Duffy-Anderson J, Ciannelli L, Honkalehto T, Bailey KM, Sogard S, Springer A and Buckley T. 2003. Distribution of age-1 and age-2 walleye pollock in the Gulf of Alaska and eastern Bering Sea: sources of variation and implications for higher trophic levels. In: The Big Fish Bang: Proceedings of the 26th Annual Larval Fish Conference. Browman HI and Skiftesvik AB, eds. Institute of Marine Research, Bergen, 381-394. 

  7. Francis RC and Bailey KM. 1983. Factors Affecting Recruitment of Selected Gadoids in the Northeast Paci?c and East Bering Sea in: From Year to Year, Wooster WS, ed. A Washington Sea Grant Publication, Seattle, U.S.A., 35-60. 

  8. Funamoto T. 2011. Causes of walleye pollock (Theragra chalcogramma) recruitment decline in the northern Sea of Japan: implications for stock management. Fish Oceanogr 20, 95-103. http://dx.doi.org/10.1111/j.1365-2419.2010.00570.x. 

  9. Funamoto T, Yamamura O, Kono T, Hamatsu T and Nishimura A. 2013. Abiotic and biotic factors affecting recruitment variability of walleye pollock (Theragra chalcogramma) off the Pacific coast of Hokkaido, Japan. Fish Oceanogr 22, 193-206. http://dx.doi.org/10.1111/fog.12015. 

  10. Funamoto T, Yamamura O, Shida O, Itaya K, Mori K, Hiyama Y and Sakurai Y. 2014. Comparison of factors affecting recruitment variability of walleye pollock Theragra chalcogramma in the Pacific Ocean and the Sea of Japan off northern Japan. Fish Sci 80, 117-126. http://dx.doi.org/10.1007/s12562-014-0716-z. 

  11. Gong Y and Zhang C. 1986. The walleye Pollock (Theragra chalcogramma) stock in Korean waters. Int North Pac Fish Comm 45, 21-38. 

  12. Heintz RA and Vollenweider JJ. 2010. Influence of size on the sources of energy consumed by overwintering walleye pollock (Theragra chalcogramma). J Exp Mar Biol Ecol 393, 43-50. http://dx.doi.org/10.1016/j.jembe.2010.06.030. 

  13. Hoerl AE and Kennard RW. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55-67. http://dx.doi.org/10.1080/00401706.1970.10488634. 

  14. Hothorn T, Zeileis A, Farebrother R, Cummins C, Millo G and Mitchell D. 2015. lmtest: Testing linear regression models. R package. 

  15. Hyun S-Y, Cadrin SX and Roman S. 2014. Fixed and mixed effect models for fishery data on depth distribution of Georges Bank yellowtail flounder. Fish Res 157, 180-186. http://dx.doi.org/10.1016/j.fishres.2014.04.010. 

  16. Kang S, Park JH and Kim S. 2013. Size-class estimation of the number of walleye pollock Theragra chalcogramma caught in the southwestern East Sea during the 1970s-1990s. Korean J Fish Aquat Sci 46, 445-453. http://dx.doi.org/10.5657/kfas.2013.0445. 

  17. Kendall A, Incze L, Ortner P, Cummings S and Brown P. 1995. The vertical distribution of eggs and larvae of walleye pollock, Theragra chalcogramma, in Shelikof Strait, Gulf of Alaska. Oceanograph Lit Rev 5, 399. 

  18. Kim H and Yoo S. 2007. Relationship between phytoplankton bloom and wind stress in the sub-polar frontal area of the Japan/East Sea. J Mar Syst 67, 205-216. http://dx.doi.org/10.1016/j.jmarsys.2006.05.016. 

  19. Kim S, Zhang C, Kim J, Oh J, Kang S and Lee JB. 2007. Climate variability and its effects on major fisheries in Korea. Ocean Sci J 42, 179-192. http://dx.doi.org/10.1007/bf03020922. 

  20. Kim WS and Huh S. 1978. Meristic and morphometric observations on nogari and Alaska Pollack. J Oceanol Soc 13, 26-30. 

  21. Kim YM. 1978. Stock Assessment of small size fishes of Alaska Pollack, Theregra chalcogramma (PALLAS), in the Eastern Sea of Korea. Bull Fish Res Dev Agency 19, 53-61. 

  22. KODC (Korea Oceanographic Data Center). 2011. NFRDI (National Fisheries Research and Development Institute) Serial Oceanographic Observation[Internet]. Retrieved from http://kodc.nifs.go.kr/ pageideng_obs_02_01 on March 15, 2016. 

  23. Kooka K. 2012. Life-history traits of walleye pollock, Theragra chalcogramma, in the northeastern Japan Sea during early to mid 1990s. Fish Res 113, 35-44. http://dx.doi.org/10.1016/j.fishres.2011.09.001. 

  24. Kooka K, Takatsu T, Kamei Y, Nakatani T and Takahashi T. 1998. Vertical distribution and prey of Walleye Pollock in the Northern Japan sea. Fish Sci 64, 686-693. 

  25. Kutner MH, Nachtsheim CJ, Neter J and Li W. 2005. Applied linear statistical models. McGraw-Hill Irwin, New York, U.S.A., 159-170. 

  26. McCullagh P and Nelder JA. 1989. Generalized linear models. CRC press. Boca Raton, U.S.A.. 

  27. Montgomery DC, Peck EA and Vining GG. 2015. Introduction to linear regression analysis. John Wiley and Sons, Hoboken, U.S.A., 1-66. 

  28. Mori K, Funamoto T, Yamashita Y and Chimura M. 2012. Stock assessment and evaluation for Japanese Pacific stock of walleye pollock (fiscal year 2011) In: Marine Fisheries Stock Assessment and Evaluation for Japanese Waters (fiscal year 2011/2012). Fisheries Agency and Fisheries Research Agency of Japan, Tokyo, Japan, 419-467. 

  29. Nishimura S. 1969. The Zoogeographocal aspects of the Japan sea -Part V. Publ Seto Mar Biol Lab 17, 67-142. 

  30. Olla BL and Davis MW. 1990. Effects of physical factors on the vertical distribution of larval walleye pollock Theragra chalcogramma under controlled laboratory conditions. Mar Ecol Prog Ser 63, 105-112. http://dx.doi.org/10.3354/meps063105. 

  31. Park B, Hue J and Kim H. 1978. Age and growth of Alaska pollack, Theragra Chalcogramma, in the Eastern Sea of Korea. Bull Fish Res Dev Agency 20, 33-42. 

  32. Parker-Stetter SL, Horne JK, Urmy SS, Heintz RA, Eisner LB and Farley EV. 2015. Vertical Distribution of Age-0 Walleye Pollock during Late Summer: Environment or Ontogeny?. Mar Coast Fish 7, 349-369. http://dx.doi.org/10.1080/19425120.2015.1057307. 

  33. Shapiro SS and Wilk MB. 1965. An analysis of variance test for normality (complete samples). Biometrika 52, 591-611. http://dx.doi.org/10.2307/2333709. 

  34. Shida O, Hamatsu T, Nishimura A, Suzaki A, Yamamoto J, Miyashita K and Sakurai Y. 2007. Interannual fluctuations in recruitment of walleye pollock in the Oyashio region related to environmental changes. Deep-sea Res Pt II 54, 2822-2831. http://dx.doi.org/10.1016/j.dsr2.2007.09.001. 

  35. Smart T, Siddon E and Duffy-Anderson J. 2013. Vertical distributions of the early life stages of walleye pollock (Theragra chalcogramma) in the Southeastern Bering Sea. Deep-sea Res Pt II 94, 201-210. http://dx.doi.org/10.1016/j.dsr2.2013.03.030. 

  36. R Core Team. 2013. R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria. 

  37. Winter AG and Swartzman GL. 2006. Interannual changes in distribution of age-0 walleye pollock near the Pribilof Islands, Alaska, with reference to the prediction of pollock year-class strength. ICES J Mar Sci 63, 1118-1135. 

  38. Yabuki K and Honda S. 2005. Stock assessment of Japanese Pacific Population of walleye pollock in 2003. In: Assessments of fishery stocks in the Japanese Waters. Fisheries Agency and Fisheries Research Agency of Japan, Tokyo, Japan, 304-339. 

  39. Yamada K, Ishizaka J, Yoo S, Kim H and Chiba S. 2004. Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES). Prog Oceanogr 61, 193-211. http://dx.doi.org/10.1016/j.pocean.2004.06.001. 

  40. Yamamura O, Honda S, Shida O and Hamatsu T. 2002. Diets of walleye pollock Theragra chalcogramma in the Doto area, northern Japan: ontogenetic and seasonal variations. Mar Ecol Prog Ser 238, 187-198. http://dx.doi.org/10.3354/meps238187. 

  41. Zhang CI and Gong Y. 2005. Effect of ocean climate changes on the Korean stock of Pacific saury, Cololabis saira (BREVOORT). J Oceanogr 61, 313-325. http://dx.doi.org/10.1007/s10872-005-0042-2. 

  42. Zhang CI, Lee JB, Kim S and Oh J. 2000. Climatic regime shifts and their impacts on marine ecosystem and fisheries resources in Korean waters. Prog Oceanogr 47, 171-190. http://dx.doi.org/10.1016/s0079-6611(00)00035-5. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로