$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Nitrogen-doped carbon nanosheets from polyurethane foams and removal of Cr(VI) 원문보기

Carbon letters, v.22, 2017년, pp.60 - 69  

Duan, Jiaqi (Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University) ,  Zhang, Baohua (Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University) ,  Fan, Huailin (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences) ,  Shen, Wenzhong (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences) ,  Qu, Shijie (State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences)

Abstract AI-Helper 아이콘AI-Helper

Nitrogen-doped carbon nanosheets with a developed porous structure were prepared from polyurethane foams by hydrothermal carbonization following $ZnCl_2$ chemical activation. Scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, solid state

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 00 MHz. The experiments were conducted on a Bruker 4-mm double-resonance MAS probe at room temperature, and samples were filled in 4 mm cylindrical ZrO2 rotors with a spinning frequency of 9 kHz. CP/ MAS procedure (cross-polarization/magic angle spinning) was employed for GlcNH2 and GlcNAc measurement, while the HPDEC procedure (high-power decoupling) was used for the residues collected at 750℃.

이론/모형

  • The scanning electron microscopy (SEM) images were obtained with an S-4800 field emission-scanning electron microscope (Hitachi, Japan) manipulated at 1 kV. Fourier transform infrared (FT-IR) spectra of the samples were obtained on a Nicolet FT-IR 380 spectrometer by the conventional KBr pellet technique. The thermogravimetric behavior of the sample was carried out under Ar flow from 30 to 800°C with a 10℃/min heating rate using a thermogravimetric analyzer (TG-DTA 8120; Rigaku, Japan).
  • 99. Micropore volumes (Vmicro) were calculated using the t-plot method. The scanning electron microscopy (SEM) images were obtained with an S-4800 field emission-scanning electron microscope (Hitachi, Japan) manipulated at 1 kV.
  • Nitrogen adsorption-desorption isotherms of the carbon materials were measured at –196℃ by a Micromeritics ASAP 2020 adsorption apparatus (USA). The adsorption branch isotherms were adopted to calculate the surface areas and pore size distributions of samples using the Brunauer-Emmett-Teller method (P/P0 of 0.01 to 0.2) and non-local density functional theory method (slit pore model). The total pore volumes (Vtotal) were counted based on the adsorbed amount at a P/P0 of 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. Perez-Fonseca AA, Gomez C, Davila H, Gonzalez-Nunez R, Robledo-Ortiz JR, Vazquez-Lepe MO, Herrera-Gomez A. Chitosan supported onto agave fiber-postconsumer HDPE composites for Cr(VI) adsorption. Ind Eng Chem Res, 51, 5939 (2012). https://doi.org/10.1021/ie201242x. 

  2. Zhang J, Zheng P. A preliminary investigation of the mechanism of hexavalent chromium removal by corn-bran residue and de-reprived chars. RSC Adv, 5, 17768 (2015). https://doi.org/10.1039/c4ra12351d. 

  3. Liu G, Deng Q, Wang H, Kang S, Yang Y, Ng DHL, Cai W, Wang G. Synthesis and characterization of nanostructured $Fe_3O_4$ micronspheres and their application in removing toxic Cr ions from polluted water. Chemistry, 18, 13418 (2012). https://doi.org/10.1002/chem.201200864. 

  4. Sun XF, Jing Z, Wang H, Li Y. Removal of low concentration Cr(VI) from aqueous solution by modified wheat straw. J Appl Polym Sci, 129, 1555 (2013). https://doi.org/10.1002/app.38858. 

  5. Karthikeyan G, Ilango SS. Adsorption of Cr(VI) onto activated carbons prepared from indigenous materials. E-J Chem, 5, 666 (2008). https://doi.org/10.1155/2008/109398. 

  6. Zhao J, Li Z, Wang J, Li Q, Wang X. Capsular polypyrrole hollow nanofibers: an efficient recyclable adsorbent for hexavalent chromium removal. J Mater Chem A, 3, 15124 (2015). https://doi.org/10.1039/c5ta02525g. 

  7. Jia YF, Xiao B, Thomas KM. Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir, 18, 470 (2002). https://doi.org/10.1021/la011161z. 

  8. Wang W, Li M, Zeng Q. Column adsorption of chromium(VI) by strong alkaline anion-exchange fiber. J Appl Polym Sci, 126, 1733 (2012). https://doi.org/10.1002/app.36634. 

  9. Zhu L, Liu Y, Chen J. Synthesis of N-methylimidazolium functionalized strongly basic anion exchange resins for adsorption of Cr(VI). Ind Eng Chem Res, 48, 3261 (2009). https://doi.org/10.1021/ie801278f. 

  10. Sawada A, Mori KI, Tanaka S, Fukushima M, Tatsumi K. Removal of Cr(VI) from contaminated soil by electrokinetic remediation. Waste Manage, 24, 483 (2004). https://doi.org/10.1016/S0956-053X(03)00133-8. 

  11. Galan B, Castaneda D, Ortiz I. Removal and recovery of Cr(VI) from polluted ground waters: a comparative study of ion-exchange technologies. Water Res, 39, 4317 (2005). https://doi.org/10.1016/j.watres.2005.08.015. 

  12. Zhu X, Tu W, Wee KH, Bai R. Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. J Membr Sci, 466, 36 (2014). https://doi.org/10.1016/j.memsci.2014.04.038. 

  13. Wang J, Zhao L, Duan W, Han L, Chen Y. Adsorption of aqueous Cr(VI) by novel fibrous adsorbent with amino and quaternary ammonium groups. Ind Eng Chem Res, 51, 13655 (2012). https://doi.org/10.1021/ie3013874. 

  14. Budiman F, Bashirom N, Tan WK, Razak KA, Matsuda A, Lockman Z. Rapid nanosheets and nanowires formation by thermal oxidation of iron in water vapour and their applications as Cr(VI) adsorbent. Appl Surf Sci, 380, 172 (2016). https://doi.org/10.1016/j.apsusc.2016.01.209. 

  15. Yu T, Liu S, Xu M, Peng J, Li J, Zhai M. Synthesis of novel aminated cellulose microsphere adsorbent for efficient Cr(VI) removal. Radiat Phys Chem, 125, 94 (2016). https://doi.org/10.1016/j.radphyschem.2016.03.019. 

  16. Shroff KA, Vaidya VK. Effect of pre-treatments on the biosorption of Chromium (VI) ions by the dead biomass of Rhizopus arrhizus. J Chem Technol Biotechnol, 87, 294 (2012). https://doi.org/10.1002/jctb.2715. 

  17. Huang R, Yang B, Liu Q, Liu Y. Simultaneous adsorption of aniline and Cr(VI) ion by activated carbon/chitosan composite. J Appl Polym Sci, 131, 39903 (2014). https://doi.org/10.1002/app.39903. 

  18. Thamilarasu P, Karunakaran K. Kinetic, equilibrium and thermodynamic studies on removal of Cr(VI) by activated carbon prepared from Ricinus communis seed shell. Can J Chem Eng, 91, 9 (2013). https://doi.org/10.1002/cjce.20675. 

  19. Qiu W, Yang D, Xu J, Hong B, Jin H, Jin D, Peng X, Li J, Ge H, Wang X. Efficient removal of Cr(VI) by magnetically separable $CoFe_2O_4$ /activated carbon composite. J Alloys Compd, 678, 179 (2016). https://doi.org/10.1016/j.jallcom.2016.03.304. 

  20. Huang X, Hou X, Song F, Zhao J, Zhang L. Facet-dependent Cr(VI) adsorption of hematite nanocrystals. Environ Sci Technol, 50, 1964 (2016). https://doi.org/10.1021/acs.est.5b05111. 

  21. Jiang W, Cai Q, Xu W, Yang M, Cai Y, Dionysios DD, O'Shea KE. Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environ Sci Technol, 48, 8078 (2014). https://doi.org/10.1021/es405804m. 

  22. Chen G, Qiao C, Wang Y, Yao J. Synthesis of magnetic gelatin and its adsorption property for Cr(VI). Ind Eng Chem Res, 53, 15576 (2014). https://doi.org/10.1021/ie502709u. 

  23. Yusuf M, Elfghi FM, Zaidi SA, Abdullah EC, Khan MA. Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview. RSC Adv, 5, 50392 (2015). https://doi.org/10.1039/c5ra07223a. 

  24. Koushkbaghi S, Jafari P, Rabiei J, Irani M, Aliabadi M. Fabrication of PET/PAN/GO/ $Fe_3O_4$ nanofibrous membrane for the removal of Pb(II) and Cr(VI) ions. Chem Eng J, 301, 42 (2016). https://doi.org/10.1016/j.cej.2016.04.076. 

  25. Zheng W, Hu J, Han Z, Wang Z, Zheng Z, Langer J, Economy J. Synthesis of porous carbon fibers with strong anion exchange functional groups. Chem Commun, 51, 9853 (2015). https://doi.org/10.1039/c5cc02695d. 

  26. Huang B, Liu Y, Li B, Zeng G, Hu X, Zheng B, Li T, Jiang L, Tan X, Zhou L. Synthesis of graphene oxide decorated with core@double-shell nanoparticles and application for Cr(vi) removal. RSC Adv, 5, 106339 (2015). https://doi.org/10.1039/c5ra22862j. 

  27. Lin Y, Cai W, Tian X, Liu X, Wang G, Liang C. Polyacrylonitrile/ferrous chloride composite porous nanofibers and their strong Crremoval performance. J Mater Chem, 21, 991 (2011). https://doi.org/10.1039/c0jm02334e. 

  28. Xu D, Yan S, Weng W, Xiao R. Cost effective nanofiber composite membranes for Cr(vi) adsorption with high durability. RSC Adv, 6, 44723 (2016). https://doi.org/10.1039/c6ra00355a. 

  29. Ren Z, Kong D, Wang K, Zhang W. Preparation and adsorption characteristics of an imprinted polymer for selective removal of Cr(vi) ions from aqueous solutions. J Mater Chem A, 2, 17952 (2014). https://doi.org/10.1039/c4ta03024a. 

  30. Li K, Zhang Y, Dang Y, Wei H, Wang Q. Removal of Cr(VI) from aqueous solutions using buckwheat (Fagopyrum esculentum Moench) hull through adsorption-reduction: affecting factors, isotherm, and mechanisms. Clean Soil Air Water, 42, 1549 (2014). https://doi.org/10.1002/clen.201300399. 

  31. Dinda D, Gupta A, Saha SK. Removal of toxic Cr(vi) by UV-active functionalized graphene oxide for water purification. J Mater Chem A, 1, 11221 (2013). https://doi.org/10.1039/c3ta12504a. 

  32. Xiao S, Liu S, Zhang J, Wang Y. Polyurethane-derived N-doped porous carbon with interconnected sheet-like structure as polysulfide reservoir for lithium?sulfur batteries. J Power Sources, 293, 119 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.048. 

  33. Nam G, Choi S, Byun H, Rhym YM, Shim SE. Preparation of macroporous carbon foams using a polyurethane foam template reprived lica method without curing step. Macromol Res, 21, 958 (2013). https://doi.org/10.1007/s13233-013-1114-6. 

  34. Karthik M, Faik A, Doppiu S, Roddatis V, D'Aguanno B. A simple approach for fabrication of interconnected graphitized macroporous carbon foam with uniform mesopore walls by using hydrothermal method. Carbon, 87, 434 (2015). https://doi.org/10.1016/j.carbon.2015.02.060. 

  35. Duan J, Fan H, Shen W. Nitrogen-doped carbon materials prepared from polyurethane foams. ChemistrySelect, 1, 3204 (2016). https://doi.org/10.1002/slct.201600403. 

  36. Esfandian H, Jafari M, Alizadeh M, Rahmati HT, Katal R. Synthesis of polyaniline nanocomposite and its application for chromium removal from aqueous solution. J Vinyl Addit Technol, 18, 250 (2012). https://doi.org/10.1002/vnl.20310. 

  37. Gao Y, Chen C, Tan X, Xu H, Zhu K. Polyaniline-modified 3Dflower-like molybdenum disulfide composite for efficient adsorption/ photocatalytic reduction of Cr(VI). J Colloid Interface Sci, 476, 62 (2016). https://doi.org/10.1016/j.jcis.2016.05.022. 

  38. Li M, Gong Y, Lyu A, Liu Y, Zhang H. The applications of populus fiber in removal of Cr(VI) from aqueous solution. Appl Surf Sci, 383, 133 (2016). https://doi.org/10.1016/j.apsusc.2016.04.167. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로