$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 한반도 남동부지역 주요단층인 양산단층대 주단층의 북단인 포항북부지역에 나타나는 단층으로부터 결정된 복수의 단층활동연대를 제시하였다. 4개 단층점토별 3개 입도분리 시료($<0.1{\mu}m$, $0.1-0.4{\mu}m$, $0.4-1.0{\mu}m$)에 대해서 일라이트 폴리타입 정량분석 결과 및 K-Ar 연대측정 결과를 일라이트 혼합연대해석법(IAA) 적용 및 해석을 통해 단층활동 절대연대를 결정하였다. 연대해석 결과, $19.6{\pm}1.86Ma$$26.1{\pm}2.55{\sim}27.9{\pm}3.46Ma$ 시기의 두 번의 뚜렷한 천부 단층활동연대가 결정되었다. 이 연대는 양산단층대 남부지역인 상천리 일대에서 결정된 단층활동연대(41.5~43.5 및 50.7 Ma) 보다 훨씬 젊은 연대이며, 동해확장과 관련된 지구조운동시기와 매우 근접한 연대이다. 양산단층대에 대한 동일한 방법의 단층활동연대 연구가 이루어질 경우 양산단층대 형성 및 진화와 관련된 지구조운동 시간대와 각 시간대의 공간적 분포 특성 등이 규명될 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

Here we present the timings of reactivated events from a fault in the northern Pohang area, which should be located at the northern-end of Yangsan fault line, the major fault in the southeastern Korean Peninsula. Recently developed illite-age-analysis (IAA) approach was employed for determining the ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서 결정된 BK-1 및 4 시료의 2M1일라이트 연대(75.1±4.99 Ma 및 88.6±5.34 Ma)가 유사한 것으로 볼 때, 단층점토 내 2M1 일라이트의기원물질이 하양층군의 퇴적 이 후 변질 혹은 열적 교란 작용을 받은 일라이트일 가능성을 지시한다.
  • 본 연구에서는 한반도 주요단층대에 대한 단층활동 절대연대 결정연구의 일환으로, 양산단층대 북단인 포항북부지역 단층노두를 대상으로 단층점토 입도분리시료에 대해 Chung et al. (2013) 방법을 이용한 입도별 일라이트 폴리타입 정량분석과 K-Ar 연대측정 결과의 IAA법 적용하여 양산단층 재활동 절대연대를 결정하고, 상천리 일대 단층활동연대와의 차이를 비교하여 양산단층의 활동 및 재활동 연대의 지구조적 의미를 논의하고자 한다.
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Alt, J.C. and Jiang, W.-T. (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology, v.19, 570-573. 

  2. Choi, J.-H., Yang, S.-J. and Kim, Y.-S. (2009) Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, v.45, p.9-28. 

  3. Chung, D., Song, Y., Kang, I.-M. and Park, C.-Y. (2013) Optimization of Illite Polytype Quantification Method. Economic and Environmental Geology, v.46, p.1-9(in Korean with English abstract). 

  4. Chung, D., Song, Y., Park, C.-Y., Kang, I.-M., Choi, S.-J. and Khulganakhuu, C. (2014) Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period. Economic and Environmental Geology, v.47, p.29-38(in Korean with English abstract). 

  5. Duvall, A.R., Clark, M.K., van der Pluijm, B.A. and Li, C. (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, v.304, p.520-526. 

  6. Grathoff, G.H. and Moore, D.M. (1996) Illite polytype quantification using Wildfire calculated X-ray diffraction patterns. Clays and Clay Minerals, v.44, p.835-842. 

  7. Grathoff, G.H., Moore, D.M., Hay, R.L. and Wemmer, K.(2001) Origin of illite in the lower Paleozoic of the Illinoisbasin; evidence for brine migration. GeologicalSociety of America Bulletin, v.113, p.1092-1104. 

  8. Haines, S.H. and van der Pluijm, B.A. (2008) Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. J. Structural Geology, v.30, 525-538. 

  9. Inoue, A., Utada. M. and Wakita, K. (1992) Smectite-toillite conversion in natural hydrothermal systems. Applied Clay Science, v.7, p.131-145. 

  10. Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T. and Ogata, A. (1991) Argon isotopic analysis by newly developed mass spectrometric system for K-Ar dating. Mineralogical Journal, v.15, 203-221. 

  11. Khulganakhuu C., Song, Y., Chung, D., Park, C., Choi, S.- J., Kang, I.-M., and Yi, K. (2015) Reactivated Timings of Inje Fault since the Mesozoic Era. Economic and Environmental Geology, v.48, p.41-49(in Korean with English abstract). 

  12. KIGAM (2012) Active Fault Map and Seismic Harzard Map, KIGAM report (NEMA-자연-2009-24), KIGAM, 899p. 

  13. Kim, C.-S., Park, K.-H. and Pail, I.-S. (2005) 40Ar/39Ar age of the volcanic pebbles with in the Silla Conglomerate and the deposition timing of the Hayang Group. J. Petrol. Soc. Korea, v.14, p. 38-44. 

  14. Kim, Y.H. and Lee, K.H. (1987) Astudy on the structure of Yangsan fault in the southern part of Kyeonju. Journal of the Korean Institute of mineral and mining engineers, v.20, p.247-260. 

  15. Kuwahara, Y., Uehara, S. and Aoki, Y. (1998) Surface microtopography of lath-shaped hydrothermal illite by $tapping-mode^{TM}$ and contact-mode AFM. Clays and Clay Minerals, v.46, p.574-582. 

  16. Kuwahara, Y., Uehara, S. and Aoki, Y. (2001) Atomic Force Microscopy study of hydrothermal illite in Izumiyama pottery stone from Arita, Saga prefecture, Japan. Clays and Clay Minerals, v.49, p.300-309. 

  17. Kyung, J.B. and Lee, K.H. (2006) Actine fault study of the Yangsan fauly system and Ulsan fault system, southeastern part of the Korean Peninsula. Journal of the Korean Geophysical Society, v.9, p.219-230. 

  18. Lee, K.H. and Na, S.H. (1983) A study of microearthquake activity of the Yangsan fault. Journal of the Geological Society of Korea. v.19, p.127-135. 

  19. Lee, K.H., Jeong, B.G., Kim, Y.H. and Yang, S.J. (1984) A geophysical study of Yangsan fault area. Journal of the Geophysical Society of Korea. v.20, p.222-240. 

  20. Lee, K.H., Lee, K.H., Jeong, B.G. and Kim, Y.H. (1985) A geophysical study of Yangsan fault area(II). Journal of the Geophysical Society of Korea. v.21, p.79-89. 

  21. Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S. (eds.) Water-Rock interaction. Balkema, Rotterdam, p.1251-1254. 

  22. Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, v.96, no.7, p.3440-3446. 

  23. Rahl, J.M., Haines, S.H. and van der Pluijm, B.A. (2011) Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, v.307, p.180-190. 

  24. Reynolds, R.C.Jr. (1994) WILDFIRE: a computer program for the calculation of three dimensional X-ray diffraction patterns of mica polytypes and their disordered variation. 8 Brook Rd. 

  25. Schleicher, A.M., van der Pluijm, B.A. and Warr, L.N. (2010) Nanocoatings of clay and creep of the San Andreas fault at Perkfield, California. Geology, v.38, p.667-670. 

  26. Solum, J.G., van der Pluijm, B.A. and Peacor, D.R. (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, v.27, p.1563-1576. 

  27. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Jung, S., Cho, H., Kim, H.-G., Kim, J.S. and Sohn, Y.K. (2013) Miocene crustal deformation, basin development, and tectonic implication in the southeastern Korean Peninsula. J. Geol. Soc. Korea, v.49, p.93-118. 

  28. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Cho, H. and Sohn, Y.K. (2015) Miocene tectonic evolution of the basins and fault systems, SE Korea: dextral, simple shear during the East Sea(Sea of Japan) opening. J. Geol. Soc., v.172, p.664-680. 

  29. Song, Y., Chung, D., Choi, S.-J., Kang, I.-M., Park, C., Itaya, T. and Yi, K. (2014) K-Ar illite dating to constrain multiple events in shallow crustal rocks: Implications for the Late Phanerozoic evolution of NE Asia. Journal of Asian Earth Sciences, v. 95, p.313-322. 

  30. Song, Y., Park, C., Sim, H., Choi, W., Son, M. and Khulganakhuu C. (2016) Reactivated Timings of Yangsan Fault in the Sangcheon-ri Area, Korea. Econ. Environ. Geol., v.49, p.97-104. 

  31. Srodon, J. and Eberl, D.D. (1984) Illite. In Bailey, S.W. (ed.) Micas, Reviews in Mineralogy. Mineralogical Society of America, Washington DC. 13, p.495-544. 

  32. van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R. and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175. 

  33. van der Pluijm, B.A., Vrolijk, P.J., Pevear, D.R., Hall, C.M. and Solum, J.G. (2006) Fault dating in the Canadian Rocky Mountains; Evidence for late Cretaceous and early Eocene orogenic pulse. Geology, v.34, p.837-840. 

  34. Vrolijk, P. and van der Pluijm, B.A. (1999) Clay gouge. Journal of Structural Geology, v.21, p.1039-1048. 

  35. Ylagan, R.F., Pevear, D.R. and Vrolijk, P.J. (2000) Discussion of ''Extracting K-Ar ages from shales: a theoretical test''. Clay Minerals, v.35 p.599-604. 

  36. Yun, S.-H., Lee, M.-W., Koh, J.-S., Kim, Y.-L. and Han, M.-K. (2000) Petrology of the Bokyeongsa volcanics in the northeast Gyeongsang Basin. J. Korean Earth Science Society, v.21, p.595-610. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트