$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수소생산 기술동향
Technical Trends of Hydrogen Production 원문보기

청정기술 = Clean technology, v.23 no.2, 2017년, pp.121 - 132  

이신근 (한국에너지기술연구원) ,  한재윤 (한국에너지기술연구원) ,  김창현 (한국에너지기술연구원) ,  임한권 (대구가톨릭대학교) ,  정호영 (전남대학교)

초록
AI-Helper 아이콘AI-Helper

온실가스 배출과 지구온난화 문제로 인하여 화석연료를 대체할 수 있는 신재생에너지 개발 및 확산의 필요성이 증가하고 있는데, 청정에너지원인 수소가 주목을 받고 있다. 수소는 지구상에서 가장 많이 존재하는 원소이며, 화석연료, 바이오매스 및 물 등 다양한 형태로 존재한다. 수소를 연료로 사용하기 위해서는 경제적인 방법뿐만 아니라 환경에 미치는 영향을 최소화하는 방법으로 생산하는 것이 중요하다. 수소생산방법에는 전통적 방법인 화석연료 개질반응을 통한 생산과 재생가능한 방법인 바이오매스 및 물을 이용한 생산으로 나뉜다. 화석연료를 이용한 수소생산은 습윤개질반응, 자열개질반응, 부분산화반응가스화반응 등 열화학적 방법으로 가능한데, 이를 청정에너지원으로서 사용하기 위해서는 수소생산과 더불어 이산화탄소 포집이 필요하다. 바이오매스를 이용한 수소생산은 그 양이 매우 미미한 수준이며, 특히 생물학적 전환법은 효율증가를 위한 반응기 구성, 수소생산미생물 배양 등 효과적으로 수소를 생산하기 위한 연구가 더욱 진행되어야 한다. 물분해를 통한 수소생산이 가장 청정한 수소생산기술이지만 태양광, 태양열, 풍력 등 재생 가능한 에너지원으로부터 충분한 에너지공급이 가능해야 한다.

Abstract AI-Helper 아이콘AI-Helper

The increase of greenhouse gases and the concern of global warming instigate the development and spread of renewable energy and hydrogen is considered one of the clean energy sources. Hydrogen is one of the most elements in the earth and exist in the form of fossil fuel, biomass and water. In order ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 총설에서는 전통방식의 수소생산과 재생 가능한 수소생산에 대한 기술에 대하여 기술원리, 특징, 연구방향에 대하여 논하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
수소는 에너지원으로서 어떤 특징이 있는가? 수소는 화석연료와는 상이하게 자연 상태에서 바로 사용할 수 없고 일차에너지원으로부터 생산하여 내연기관 혹은 연료전지를 통하여 에너지를 생산하며, 부산물로 물만 만들어지는 청정에너지원이다[3,4]. 또한 수소는 Table 1에서 보는 것과 같이 기존 화석연료에 비하여 발열량이 매우 높다.
에너지저장시스템의 원활한 운용을 위해서는 저장측면에서, 가용측면에서 무엇이 필요한가? 따라서 재생에너지를 확대하기 위해서는 에너지저장 시스템(energy storage system, ESS)이 반드시 필요하다[2]. 에너지저장시스템의 원활한 운용을 위해서는 저장측면에서 수요시기에 맞추어 충분히 오래 저장할 수 있어야 하며, 가용측면에서 필요시 즉각 사용할 수 있어야 한다. 이러한 측면에서 화석연료를 대체할 수 있는 청정에너지원인 수소가 주목을 받고 있다.
재생에너지를 확대하기 위해서 에너지저장 시스템이 반드시 필요한 이유는 무엇인가? 전 세계적으로 재생에너지를 효율적으로 사용하기 위하여 많은 연구개발이 진행되고 있으나 생산량이 불규칙적이며 예측이 불가능하기 때문에 에너지원으로서 확대에 많은 어려움이 있다. 따라서 재생에너지를 확대하기 위해서는 에너지저장 시스템(energy storage system, ESS)이 반드시 필요하다[2].
질의응답 정보가 도움이 되었나요?

참고문헌 (49)

  1. International Energy Agency (IEA), "Energy Technology Perspectives 2015," Paris, (2015). 

  2. Hadjipaschalis, I., Poullikkas, A., and Efthimiou, V., "Overview of Current and Future Energy Storage Technology for Electric Power Applications," Renew. Sustain. Energy Rev., 13(6-7), 1513-1522 (2009). 

  3. Balat, M., "Potential Importance of Hydrogen as a Future Solution to Environmental And Transportation Problems," Int. J. Hydrogen Energy, 33(15), 4013-4029 (2008). 

  4. Demirbas, A., and Dincer, K., "Sustainable Greed Diesel: A Futuristic View," Energy Sources, Part A., 30(13), 1233-1241 (2008). 

  5. McDowall, W., and Eames, M., "Forecasts, Scenarios, Visions, Backcasts and Roadmaps to the Hydrogen Economy: A Review of the Hydrogen Futures Literature," Energy Policy, 34(11), 1236-1250 (2006). 

  6. Zhang, J., Fisher, T. S., Ramachandran, P. V., Gore, J. P., and Mudawar, I., "A Review of Heat Transfer Issues in Hydrogen Storage Technologies," J. Heat Transfer, 127(12), 1391-1399 (2005). 

  7. Aceves, S. M., Espinosa-Loza, F. Ledesma-Orozco, E., Ross, T. O., Weisberg, A. H., Brunner, T. C., and Kircher, O., "High-Density Automotive Hydrogen Storage With Cryogenic Capable Pressure Vessels," Int. J. Hydrogen Energy, 35(3), 1219-1226 (2010). 

  8. Sakintuna, B., Lamari-Darkrim, F., and Hirscher, M., "Metal Hydride Materials for Solid Hydrogen Storage: A Review," Int. J. Hydrogen Energy, 32(9), 1121-1140 (2007). 

  9. Elshout, R., "Hydrogen Production by Steam Reforming: Management of the Gas is Critical for Petroleum Refiners," Chem. Eng., 117, 34-38 (2010). 

  10. Voldsund, M., Jordal, K., and Anantharaman, R., "Hydrogen Production with $CO_2$ Capture," Int. J. Hydrogen Energy, 41(9), 4969-4992 (2016). 

  11. Nikolaidis, P., and Poullikkas, A., "A Comparative Overview of Hydrogen Production Processes," Renew. Sustain. Energy Rev., 67, 597-611 (2017). 

  12. Ashik, U. P. M., Wan Daud, W. M. A., and Abbas, H. F., "Production of Greenhouses Gas Free Hydrogen by Thermocatalytic Decompostion of Methane-A Review," Renew. Sustain. Energy Rev., 44, 221-256 (2015). 

  13. Basile, A., Paola, L. D., Hai, F. I., and Piemonte, V., "Membrane Reactors for Energy Applications and Basic Chemical Production," Woodhead Publishing, Cambridge, 31-59 (2015). 

  14. Ahmed, K., and Foger, K., "Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-Based Anodes for Solid Oxide Fuel Cells," Catal. Today, 63(2-4), 479-487 (2000). 

  15. Rostrup-Nielsen, J. R., "Catalyst Steam Reforming," Springer Berlin Heidelberg, Berlin, 30-73 (1984) 

  16. Castro Luna, A. E., and Becerra, A. M., "Kinetices of Methane Steam Reforming on a Ni on Alumina-Titania Catalyst," React. Kinet. Catal. Lett., 61(2), 369-374 (1997). 

  17. Wei, J., and Iglesia, E., "Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters And Turnover Rate Comparisons Among Noble Metals," J. Phys. Chem., 108(13), 4094-4103 (2004). 

  18. Castro Luna, A. E., Becerra, A. M., and Dimitrijewits, M. I., "Methane Steam Reforming over Rhodium Promoted Ni/ $Al_2O_3$ Catalysts," React. Kinet. Catal. Lett., 67(2), 247-252 (1999). 

  19. Jeong, J. H., Lee, J. W., Seo, D. J., Seo, Y. Yoon, W. L., Lee, D. K., and Kim, D. H., "Ru-doped Ni Catalysts Effective for the Steam Reforming of Methane without the Pre-Reduction Treatment with $H_2$ ," Appl. Catal. A: Gen., 302(2), 151-156 (2006). 

  20. Li, D., Nakagawa, Y., and Tomishige, K., "Methane Reforming to Synthesis Gas over Ni Catalysts Modified with Noble Metals," Appl. Catal. A: Gen., 408(1-2), 1-24 (2011). 

  21. Ritter J. A., and Ebner A. D., "State-of-the-Art Adsorption And Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries," Sep. Sci. Technol., 42(6), 1123-1193 (2007). 

  22. Vernon P. D. F., Green M. L. H., Cheetham A. K., and Ashcroft A. T., "Partial Oxidation of Methane to Synthesis Gas," Catal. Lett., 6(2), 181-186 (1990). 

  23. Liu K., Song C., and Subramani V., "Hydrogen and Syngas Production and Purification Technology," A John Wiley & Sons, Inc., New Jersey, 127-155 (2010). 

  24. Palmaa, V., Riccaa, A., Addeoa, B., Reab, M., Paolillob, G., and Ciambelli, P., "Hydrogen Production by Natural Gas in a Compact ATR-Based kW-Scale Fuel Processor," Int . J. Hydrogen Energy, 42(3), 1579-1589 (2017). 

  25. Park, J. W., Lee, S. W., Lee, C. B., Park, J. W., Lee, D. W., Kim, S. H., Kim, S. S., and Ryi, S. K., "Single-Stage Temperature-Controllable Water Gas Shift Reactor with Catalytic Nickel Plates," J. Power Sources, 247, 280-285 (2014). 

  26. Flamos, A., Geogallis, P. G., Doukas, H., and Psarras J., "Using Biomass to Acheave European Union Energy Targets-a Review of Biomass Status, Potential, and Suporting Polllicies," Int. J. Green. Energy, 8(4), 411-428 (2011). 

  27. Doranehgard, M. H., Samadyar, H., Mesbah, M., Haratipour, P., and Samiezade, S., "High-purity Hydrogen Production with in situ $CO_2$ Capture Based on Biomass Gasification," Fuel, 202, 29-35 (2017). 

  28. Iribarren, D., Susmozas, A., Petrakopoulou, F., and Dufour, J., "Environmental Study on Hydorgen Production via Lignocellulosic Biomass Gasification," J. Clean. Prod., 69, 165-175 (2014). 

  29. Vasconcelos, E. A. F., Leitao, R. C., Santaella, S. T., "Factors that Affect Bacterial Ecology in Hydrogen-Producing Anaerobic Reactors," Bioenergy Res., 9(4), 1260-1271 (2016). 

  30. Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husaini, T., Kamarudin, S. K., and Daud, W. R. W., "Overview Biohydrogen Technologies and Application in Fuel Cell Technology," Renew. Sustain. Energy Rev., 6, 137-162 (2016). 

  31. Rossmeisl, J., Logadottir, A., and Norskov, J. K., "Electrolysis of Water on (oxidized) Metal Surface," Chem. Phys., 319(1-3), 178-184 (2005). 

  32. Abanades, S., Charvin, P., Lemont, F., and Flamant, G., "Novel two-step $SnO_2$ /SnO Water-Splitting Cycle for Solar Thermochemical Production of Hydrogen," Int. J. Hydrogen Energy, 33(21), 7568-7578 (2008). 

  33. Zamfirescu, C., Naterrer, G. F., and Dincer, I., "Water Splitting with a Dual Photo-Electrochemical Cell and Hybride Catalysis for Enhanced Solar Energy Utillization," Int. J. Energy Res., 37(10), 1175-1186 (2013). 

  34. Moon, D. K., Lee, D. G., and Lee, C. H., " $H_2$ Pressure Swing Adsorption for High Pressure Syngas from an Integrated Gasification Combined Cycle with a Carbon Capture Process," Appl. Energy, 183, 760-774 (2016). 

  35. Wiheeb, A. D., Helwani, Z., Kim, J., and Othman, M. R., "Pressure Swing Adsorption Technology for Carbon Dioxide Capture," Sep. Purif. Rev., 45(2), 108-121 (2016). 

  36. Golmakani, A., Fatemi, S., and Tamnanloo, J., "Investigating PSA, VSA, and TSA Method in SMR Unit of Refineries for Hydrogen Production with Fuel Cell Specification," Sep. Purif. Technol., 176, 73-91 (2017). 

  37. Ribeiro, R. P. P. L., Grande, C. A., and Rodrigues, A. E., "Electric Swing Adsorption of Gas Separation and Purification: A Review," Sep. Sci. Technol., 49(13), 1985-2002 (2014). 

  38. Sailagyi, P. A., Westerwaal, R. J., Lansink, M., van Montfort, H. I., Trzesniewski, B. J., Garcia, M. V., Geerlings, H., and Dam, B., "Contaminant-Resistant MoF-Pd Composite for $H_2$ Separation, RCS Adv., 5, 89323-89326 (2015). 

  39. Uemiya, S., Kajiwara, M., and Kojima, T., "Composite Membranes of Group VIII Metal Supported on Porous Alumina," AIChE J., 43, 2715-2723 (1997). 

  40. Nair, B. N., Yamaguchi, T., Okubo, T., Suematsu, H., keizer, K., and Nakao, S. I., "Sol-Gel Synthesis of Molecular Sieving Silica Membranes," J. Membr. Sci., 135(2), 237-243 (1997). 

  41. Ryi S.-K., "Hydrogen Selective Membrane and Clean Energy," NICE, 32 (2) 188-194 (2014). 

  42. Ward, T. L., and Dao, T., "Model of Hydrogen Permeation Behavior in Palladium Membranes," J. Membr. Sci., 153(2), 211-231 (1999). 

  43. Phair, J. W., and Badwal, S. P. S., "Review of Proton Conductor for Hydrogen Separation," Ionics, 12(2), 103-115 (2006). 

  44. Balachandran, U., Lee, T. H., Chen, L., Song, S. J., Picciolo, J. J., and Dorris, S. E., "Hydrogen Separation by Dense Cermet Membranes," Fuel, 85(2), 150-155 (2006). 

  45. Balachandran, U., Lee, T. H., and Dorris, S. E., "Hydrogen Production by Water Dissociation Using Mixed Conduction Dense Ceramic Membrane," Int. J. Hydrogen Energy, 32(4), 451-456 (2007). 

  46. Uemiya, S., "State-of-the-art of Supported Metal Membranes for Gas Separation," Sep. Purif. Methods, 28(1), 51-85 (1999). 

  47. Conde, J. J., Marono, M., and Sanchez-Hervas, J. M., "Pd-based Membranes for Hydrogen Separation:Review of Alloying Elements and their Influence on Membrane Properties," Sep. Purif. Rev., 46, 152-177 (2017). 

  48. Plazaola, A. A., Tanaka, D. A. P., A M. V. S., and Gallucci, F., "Recent Advances in Pd-based Membranes for Membrane Reactor," Molecules, 22, 1-53 (2017). 

  49. Li, H., Caravella, A., and Xu, H. Y., "Recent Progress in Pd-based Composite Membranes," J. Mater. Chem. A, 4, 14069-14094 (2016). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로