$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp. 원문보기

Journal of microbiology and biotechnology, v.27 no.6, 2017년, pp.1157 - 1162  

Bae, Soo-Jung (Department of Biotechnology, Yeungnam University) ,  Park, Young-Hwan (Department of Biotechnology, Yeungnam University) ,  Bae, Hyeun-Jong (Department of Bioenergy Science and Technology, Chonnam National University) ,  Jeon, Junhyun (Department of Biotechnology, Yeungnam University) ,  Bae, Hanhong (Department of Biotechnology, Yeungnam University)

Abstract AI-Helper 아이콘AI-Helper

The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Informat...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Among different barcoding methods, those targeting the ITS region have the greatest probability of successful identification of the broadest range of fungi[20, 26-28]. In this study, molecular identification of 11 Trichoderma isolates was conducted using the ITS sequence (Table 1). The results revealed that the Korea Agricultural Culture Collection (KACC) strains 40552 and 40557 shared 99% sequence identity with each other and were 100% homologous with both T.
  • Five Trichoderma isolates (KACC 40552, 40557, 40929, 40931, and 41717) showed strong inhibitory activity against seven Phytophthora species. In this study, we further characterized the selected isolates through analyses of the ITS region, metabolic profiling, and CWDE activities.
  • In this study, we identified and characterized selected Trichoderma isolates by metabolic profiling and enzyme assay to evaluate their potential for use as biocontrol agents against plant pathogens.
  • The cell walls of most fungi are chitin-based, and disruption of the cell walls has profound effects on cell growth and morphology. In this study, we measured the activities of various CWDEs from five Trichoderma isolates (KACC 40552, 40557, 40929, 40931, and 41717) to determine which isolates had the potential for use as biocontrol agents with the ability to degrade cell walls of fungal pathogens (Table 3). High enzyme activities for Avicel, CMC, xylan, β-glucan, pectin, and chitin degradation were found in KACC 41717, 40929, 41717, 40552/40557, 41717, and 41717, respectively.
  • Metabolic profiling of the EtOAc extracts of five Trichoderma isolates (KACC 40552, 40557, 40929, 40931, and 41717) was conducted using an Agilent 6890N GC (Agilent, USA) fitted with a HP-5MS capillary column (30 m × 0.25 mm × 0.25 μm) linked to a JMS 700 mass spectrometer (Jeol, Japan) at the Korea Basic Science Institute (Korea).

대상 데이터

  • All Trichoderma isolates were obtained from the Rural Development Administration (RDA) Genebank Information Center (GIC) (Wanju, Republic of Korea). Isolates were maintained on potato dextrose agar (PDA) (Difco, USA) at 25℃ for 14 days under dark conditions.
  • atroviride. The results of the present study matched the identification determined by the RDA GIC for KACC 40776 (T. atroviride), 40871 (T. harzianum), and 40929 (T. virens). Three isolates (KACC 40931, 41707, and 41717) were homologous with T.

데이터처리

  • Duncan’s multiple-range test was applied to identify differences among groups at a significance of p ≤ 0.05 using the SAS software (SAS Inc., USA).

이론/모형

  • Cell-free supernatants were then harvested by centrifugation at 6,300 ×g for 20 min at 4℃, after which the protein concentrations of the Trichoderma liquid cultures were measured by the Bradford method.
  • Phylogenetic tree based on internal transcribed spacer (ITS) sequences of the selected Trichoderma isolates. The tree was generated from the ITS sequences of Trichoderma isolates by the neighbor-joining method using MEGA5 (http://www/ megasoftware.net/). The numbers at the nodes indicate bootstrap values from 1,000 replications.
본문요약 정보가 도움이 되었나요?

참고문헌 (42)

  1. Samuels GJ. 2006. Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96: 195-206. 

  2. Benitez T, Rincon AM, Limon MC, Codon AC. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7: 249-260. 

  3. Munir S, Jamal Q, Bano K, Sherwani SK, Abbas MN, Azam S, et al. 2014. Trichoderma and biocontrol genes. Sci. Agric. 5: 40-45. 

  4. Reino JL, Guerrero RF, Hernandez-Galan R, Collado IG. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 7: 89-123. 

  5. Romao-Dumaresq AS, de Araujo WL, Talbot NJ, Thornton CR. 2012. RNA interference of endochitinases in the sugarcane endophyte Trichoderma virens 223 reduces its fitness as a biocontrol agent of pineapple disease. PLoS One 7: e47888. 

  6. Schuster A, Schmoll M. 2010. Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87: 787-799. 

  7. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. 2004. Trichoderma sp., opportunistic avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56. 

  8. Bae H. 2011. Trichoderma species as abiotic and biotic stress quenchers in plants. Res. J. Biotechnol. 6: 73-79. 

  9. Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA. 2009. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 60: 3279-3295. 

  10. Bae H, Roberts DP, Lim H-S, Strem MD, Park S-C, Ryu C-M, et al. 2011. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol. Plant Microbe Interact. 24: 336-351. 

  11. Bailey BA, Lumsden RD. 1998. Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In Kubicek CP, Harman GE (eds.). Trichoderma and Gliocladium. Taylor and Francis Ltd., Bristol. London, UK. 

  12. Grondona I, Hermosa R, Tejada M, Gomis MD, Mateos PF, Bridge PD, et al. 1997. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Appl. Environ. Microbiol. 63: 3189-3198. 

  13. Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A. 2011. Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl. Environ. Microbiol. 77: 4361-4370. 

  14. Woo SL, Scala F, Ruocco M, Lorito M. 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi and plants. Phytopathology 96: 181-185. 

  15. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. 2008. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40: 1-10. 

  16. McIntyre M, Nielsen J, Arnau J, van der Brink H, Hansen K, Madrid S. 2004. Proceedings of the 7th European Conference on Fungal Genetics. Copenhagen, Denmark. 

  17. Ajesh K, Sreejith K. 2009. Peptide antibiotics: an alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 30: 999-100. 

  18. Kummerer K. 2009. Antibiotics in the aquatic environment - a review-part I. Chemosphere 75: 417-434. 

  19. Mitchell AM, Strobel GA, Moore E, Robison R, Sears J. 2010. Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156: 270-277. 

  20. Shoresh M, Harman GE, Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 48: 21-43. 

  21. Hermosa MR, Grondona I, Iturriaga EA, Diaz-Minguez JM, Castro C , Monte E , Garcia-Acha I. 2000. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl. Environ. Microbiol. 66: 1890-1898. 

  22. Larena I, Salazar O, Gonzalez V, Julian MC, Rubio V. 1999. Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J. Biotechnol. 75: 187-194. 

  23. Park SU, Lim H-S, Park K-C, Park Y-H, Bae H. 2013. Fungal endophytes from three cultivars of Panax ginseng Meyer cultivated in Korea. J. Ginseng Res. 36: 107-113. 

  24. Rouini M-R, Ardakani YH, Soltani F, Aboul-Enein HY, Foroumadi A. 2006. Development and validation of a rapid HPLC method for simultaneous determination of tramadol, and its two main metabolites in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 830: 207-211. 

  25. Bae S-J, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, et al. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biol. Control 92: 128-138. 

  26. Borman AM, Linton CJ, Miles S-J, Johnson EM. 2008. Molecular identification of pathogenic fungi. J. Antimicrob. Chemother. 61: i7-i12. 

  27. Chen XY, Qi YD, Wei JH, Zhang Z, Wang DL, Feng JD, Gan BC. 2010. Molecular identification of endophytic fungi from medicinal plant Huperzia serrata based on rDNA ITS analysis. World J. Microbiol. Biotechnol. 27: 495-503. 

  28. Roblems P. 2003. Molecular identification of arbuscular mycorrhizal fungi in roots: perspectives and problems. Folia Geobot. 38: 113-124. 

  29. Tijerino A, Hermosa R, Cardoza RE, Moraga J, Malmierca MG, Aleu J, et al. 2011. Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. Toxins (Basel) 3: 1220-1232. 

  30. Degenkolb T, Grafenhan T, Nirenberg HI, Gams W, Bruckner H. 2006. Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J. Agric. Food Chem. 54: 7047-7061. 

  31. Romeh A. 2013. Diethyl phthalate and dioctyl phthalate in Plantago major L. Afr. J. Agric. Res. 8: 4360-4364. 

  32. Chandra S, Sharma AK. 2009. Antifungal and spectral studies of Cr(III) and Mn(II) complexes derived from 3,3'- thiodipropionic acid derivative. Res. Lett. Inorg. Chem. 2009: 945670. 

  33. Rane RA, Bangalore P, Borhade SD, Khandare PK. 2013. Synthesis and evaluation of novel 4-nitropyrrole-based 1,3,4- oxadiazole derivatives as antimicrobial and anti-tubercular agents. Eur. J. Med. Chem. 70: 49-58. 

  34. Bailey AV, De Lucca AJ, Moreau JP. 1989. Antimicrobial properties of some erucic acid-glycolic acid derivatives. J. Am. Oil Chem. Soc. 66: 932-934. 

  35. Policegoudra RS, Goswami S, Aradhya SM, Chatterjee S, Datta S, Sivaswamy R, et al. 2012. Bioactive constituents of Homalomena aromatica essential oil and its antifungal activity against dermatophytes and yeasts. J. Mycol. Med. 22: 83-87. 

  36. Morandim ADA, Pin AR, Pietro NAS, Alecio AC, Kato MJ, Young CM, et al. 2010. Composition and screening of antifungal activity against Cladosporium sphaerospermum and Cladosporium cladosporioides of essential oils of leaves. Afr. J. Biotechnol. 9: 6135-6139. 

  37. Al-Jafari A-H, Vila R, Freixa B, Tomi F, Casanova J, Costa J, Canigueral S. 2011. Composition and antifungal activity of the essential oil from the rhizome and roots of Ferula hermonis. Phytochemistry 72: 1406-1413. 

  38. Cheng S-S, Chung M-J, Lin C-Y, Wang Y-N, Chang S-T. 2012. Phytochemicals from Cunninghamia konishii Hayata act as antifungal agents. J. Agric. Food Chem. 60: 124-128. 

  39. Li G-X, Liu Z-Q. 2009. Unusual antioxidant behavior of alpha- and gamma-terpinene in protecting methyl linoleate, DNA, and erythrocyte. J. Agric. Food Chem. 57: 3943-3948. 

  40. Bencini A, Lippolis V. 2010. 1,10-Phenanthroline: a versatile building block for the construction of ligands for various purposes. Coordin. Chem. Rev. 254: 2096-2180. 

  41. Markovich N, Kononova GL. 2003. Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: a review. Appl. Biochem. Microbiol. 39: 341-351. 

  42. Vieira PM, Coelho ASG, Steindorff AS, de Siqueira SJL, Silva RDN, Ulhoa CJ. 2013. Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 14: 1-11. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로