$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전리방사선이 세포질 소기관의 미세구조변화와 기전에 미치는 영향
The Effect of Ionizing Radiation on the Ultrastructural Changes and Mechanism on the Cytoplasmic Organelles 원문보기

생명과학회지 = Journal of life science, v.27 no.6 = no.206, 2017년, pp.708 - 725  

이무석 (부산대학교병원 핵의학과) ,  이종규 (부경대학교 물리학과) ,  남지호 (양산부산대학교병원 방사선종양학과) ,  하태영 (양산부산대학교병원 방사선종양학과) ,  임영현 (양산부산대학교병원 핵의학과) ,  길상형 (양산부산대학교병원 핵의학과)

초록
AI-Helper 아이콘AI-Helper

전리방사선은 물질과 상호작용하여 원자내의 중성자나 양성자, 궤도전자를 충분히 제거시킬 수 있는 에너지이다. 이와 같은 전리방사선은 DNA이나 세포질 소기관과 세포질의 방사선 분해 생성물을 통해 직접적, 간접적으로 상호작용하여 분자구조를 변화시키는 산화적 대사를 일으킨다. 이러한 전리 현상은 분자수준에서 조직을 손상시키고, 세포 기능을 파괴할 수 있다. 따라서, 전리방사선에 의해 유도된 이온채널과 수송 변형이 보고되고 있다. 이러한 현상이 항상성을 유지하기 위한 생화학적 과정을 무너뜨리면, 유도된 생물학적 변화가 지속되고 후대로 영향을 미친다. 또한, 전리방사선의 영향으로 형성된 활성산소는 세포연접을 통해 인접세포로 퍼져 나갈 수 있다. 방사선량, 선량률, 선질에 따라 이러한 메커니즘이 충분히 방어할 수도 있고 그렇지 않을 수도 있다. 본 총설에서는 방사선생물학의 개념을 뒷받침하는 전리방사선의 세포수준에서 생물학적 효과에 대한 보고서를 간략히 알아보았다. 전리방사선의 생물학적 효과를 잘 이해하면 방사선을 잘 이용할 수 있고, 방사선피폭으로부터 더 나은 방호를 할 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

Ionizing radiation is enough energy to interact with matter to remove orbital electrons, neutrons, and protons in the atom. Ionizing radiation like this leads to oxidizing metabolism that alter molecular structure through direct and indirect interactions of radiation with the deoxyribonucleic acid i...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 전리방사선이 미토콘드리아의 수(Abundance)에도 영향을 미친다는 보고는 되었지만, 그 기전 또한 크게 알려지지 않았다. 따라서, 본 총설은 전리방사선 과 생체가 상호작용하여 나타나는 현상에 대한 이해를 돕고자 현재까지 알려진 전리방사선의 생물학적 영향을 세포 소기관 중심으로 알아보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
세포와 전리방사선의 직·간접적 상호작용 중 직접작용은 무엇인가? 세포는 전리방사선과 직접적·간접적으로 상호작용을 한다. 직접작용은 중성자나 중입자선과 같이 높은 선 에너지 전달 (Linear energy transfer, LET)의 전리방사선이나 고 에너지의 X선, γ선이 단백질 또는 DNA처럼 큰 분자를 표적으로 직접 작용하여 돌연변이 유발, 염색체 재배열, 소핵 형성하여 세포를 사멸시키는 것이다[17, 71]. 현재까지, 방사선 생물학 연구는 직접적으로 전리방사선과 세포핵 DNA와의 상호작용이 DNA를 손상시킨다고 널리 알려져 있지만, 지난 20년 동안 방사선 생물학의 패러다임은 전리방사선이 세포에 직접 조사 되어 유도되는 것이 아닌, 비표적 효과로 바뀌어 왔다[39, 67, 94].
전리방사선은 어떤 현상을 일으키는가? 전리방사선은 물질과 상호작용하여 원자내의 중성자나 양성자, 궤도전자를 충분히 제거시킬 수 있는 에너지이다. 이와 같은 전리방사선은 DNA이나 세포질 소기관과 세포질의 방사선 분해 생성물을 통해 직접적, 간접적으로 상호작용하여 분자구조를 변화시키는 산화적 대사를 일으킨다. 이러한 전리 현상은 분자수준에서 조직을 손상시키고, 세포 기능을 파괴할 수 있다.
고LET의 전리방사선이 일으킨 세포질 손상에 의한 잠재적인 영향이 알려지지 않은 이유는 무엇인가? 고LET의 전리방사선은 세포핵보다 세포질에 조사되는 것이 많아도 세포질 손상에 의한 잠재적인 영향, ROS에 유도된 유전체의 불안정성 및 다른 염색체 손상의 유도에 대해서는 알려지지 않았다. 이것은 주로 세포핵에 영향을 미치지 않으면서 세포질을 선택적으로 표적화하는 기술적 어려움 때문이다. X선이나 γ선과 같은 저 선량, 저 LET 전리방사선은 암 발생, 의료이용, 방사선 작업종사자 같은 직업인, 원전사고처럼 다양한 위험에 노출될 기회가 많아서 사회적으로도 중요하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (113)

  1. Ames, B. N. 1989. Endogenous DNA damage as related to cancer and aging. Mutat. Res. 214, 41-46. 

  2. Ames, B. N. 1989. Endogenous oxidative DNA damage, aging, and cancer. Free Radic. Res. Commun. 7, 121-128. 

  3. Amundson, S. A., Bittner, M. and Fornace, A. J. 2003. Functional genomics as a window on radiation stress signaling. Oncogene 22, 5828-5833. 

  4. Attardi, G. and Schatz, G. 1988. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4, 289-331. 

  5. Azzam, E. I., de Toledo, S. M. and Little, J. B. 2003. Oxidative metabolism, gap junctions and the ionizing radiation- induced bystander effect. Oncogene 22, 7050-7057. 

  6. Azzam, E. I., Jay-Gerin, J. P. and Pain, D. 2012. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 327, 48-60. 

  7. Balda, M. S. and Matter, K. 1998. Tight junctions. J. Cell Sci. 111, 541-547. 

  8. Balaban, R. S., Nemoto, S. and Finkel, T. 2005. Mitochondria, oxidants, and aging. Cell. 120, 483-495. 

  9. Baverstock, K. 2000. Radiation-induced genomic instability: a paradigm-breaking phenomenon and its relevance to environmentally induced cancer. Mutat. Res. 454, 89-109. 

  10. Bernhard, E. J., Maity, A., Muschel, R. J. and McKenna, W. G. 1995. Effects of ionizing radiation on cell cycle progression. Radiat. Environ. Biophys. 34, 79-83. 

  11. Bionda, C., Hadchity, E., Alphonse, G., Chapet, O., Rousson, R., Rodriguez-Lafrasse, C. and Ardail, D. 2007. Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. Free Radic. Biol. Med. 43, 681-694. 

  12. Bolus, N. E. 2001. Basic review of radiation biology and terminology. J. Nucl. Med. Technol. 29, 67-73. 

  13. Booher, R. N., Holman, P. S. and Fattaey, A. 1997. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J. Biol. Chem. 272, 22300-22306. 

  14. Brateman, L. 1999. The AAPM/RSNA Physics Tutorial for Residents: Radiation Safety Considerations for Diagnostic Radiology Personnel 1. J. Digit. Imaging 19, 1037-1055. 

  15. Buonanno, M., De Toledo, S. M. and Azzam, E. I. 2011. Increased frequency of spontaneous neoplastic transformation in progeny of bystander cells from cultures exposed to densely ionizing radiation. PloS One 6, e21540. 

  16. Buonanno, M., de Toledo, S. M., Pain, D. and Azzam, E. I. 2011. Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress. Radiat. Res. 175, 405-415. 

  17. Calabrese, E. J. 2013. Origin of the linearity no threshold (LNT) dose-response concept. Arch. Toxicol. 87, 1621-1633. 

  18. Corre, I., Guillonneau, M. and Paris, F. 2013. Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity. Int J. Mol. Sci. 14, 22678-22696. 

  19. Cortopassi, G. A. and Arnheim, N. 1990. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 18, 6927-6933. 

  20. Cortopassi, G. A., Shibata, D., Soong, N. W. and Arnheim, N. 1992. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl. Acad. Sci. USA 89, 7370-7374. 

  21. Crews, C. M. and Erikson, R. L. 1993. Extracellular signals and reversible protein phosphorylation: what to Mek of it all. Cell. 74, 215-217. 

  22. Deckbar, D., Jeggo, P. A. and Lobrich, M. 2011. Understanding the limitations of radiation-induced cell cycle checkpoints. Crit. Rev. Biochem. Mol. Biol. 46, 271-283. 

  23. Deshpande, A., Goodwin, E. H., Bailey, S. M., Marrone, B. L. and Lehnert, B. T. 1996. Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts: Evidence for an extranuclear target. Radiat. Res. 145, 260-267. 

  24. Duchen, M. R. 2004. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med. 25, 365-451. 

  25. Fernandez Silva, P., Enriquez, J. A. and Montoya, J. 2003. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol. 88, 41-56. 

  26. Gerhard, G. S., Benko, F. A., Allen, R. G., Tresini, M., Kalbach, A., Cristofalo, V. J. and Gocke, C. D. 2002. Mitochondrial DNA mutation analysis in human skin fibroblasts from fetal, young, and old donors. Mech. Ageing Dev. 123, 155-166. 

  27. Gire, V. and Dulic, V. 2015. Senescence from G2 arrest, revisited. Cell Cycle 14, 297-304. 

  28. Haimovitz-Friedman, A., Kan, C. C., Ehleiter, D., Persaud, R. S., McLoughlin, M., Fuks, Z. and Kolesnick, R. N. 1994. Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J. Exp. Med. 180, 525-535. 

  29. Han, W. and Yu, K. N. 2009. Response of cells to ionizing radiation, pp. 204-262., Advances in biomedical sciences and engineering. Edited by SC Tjong. Bentham Science Publishers, Ltd.: Hong Kong, China. 

  30. Harding, H. P., Calfon, M., Urano, F., Novoa, I. and Ron, D. 2002. Transcriptional and translational control in the mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol. 18, 575-599. 

  31. Hetz, C., Bernasconi, P., Fisher, J., Lee, A. H., Bassik, M. C., Antonsson, B. and Korsmeyer, S. J., et al. 2006. Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with $IRE1{\alpha}$ . Science 312, 572-576. 

  32. Hickman, A. W., Jaramillo, R. J., Lechner, J. F. and Johnson, N. F. 1994. ${\alpha}$ -Particle-induced p53 protein expression in a rat lung epithelial cell strain. Cancer Res. 54, 5797-5800. 

  33. Hirai, F., Motoori, S., Kakinuma, S., Tomita, K., Indo, H. P., Kato, H. and Ozawa, T., et al. 2004. Mitochondrial signal lacking manganese superoxide dismutase failed to prevent cell death by reoxygenation following hypoxia in a human pancreatic cancer cell line, KP4. Antioxid. Redox Signal. 6, 523-535. 

  34. Hong, M., Xu, A., Zhou, H., Wu, L., Randers-Pehrson, G., Santella, R. M. and Hei, T. K., et al. 2010. Mechanism of genotoxicity induced by targeted cytoplasmic irradiation. Br. J. Cancer. 103, 1263-1268. 

  35. Hynes, R. O. 1999. Cell adhesion: old and new questions. Trends Biochem. Sci. 24, M33-M37. 

  36. Jacobson, K. 2015. Measuring Biological Cell Damage Due to Ionizing Radiation. Honors theses. Paper 75. College of Saint Benedict and Saint John's University, Minnesota, United States. 

  37. Jay-Gerin, J. P. and Ferradini, C. 2000. Are there protective enzymatic pathways to regulate high local nitric oxide (.NO) concentrations in cells under stress conditions? Biochimie. 82, 161-166. 

  38. Jin, P., Gu, Y. and Morgan, D. O. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134, 963-970. 

  39. Kadhim, M., Salomaa, S., Wright, E., Hildebrandt, G., Belyakov, O. V., Prise, K. M. and Little, M. P. 2013. Non-targeted effects of ionising radiation-implications for low dose risk. Mutat. Res. Rev. Mutat. Res. 752, 84-98. 

  40. Kam, W. W. Y. and Banati, R. B. 2013. Effects of ionizing radiation on mitochondria. Free Radic. Biol. Med. 65, 607-619. 

  41. Kam, W. W. Y., McNamara, A. L., Lake, V., Banos, C., Davies, J. B., Kuncic, Z. and Banati, R. B. 2013. Predicted ionisation in mitochondria and observed acute changes in the mitochondrial transcriptome after gamma irradiation: a Monte Carlo simulation and quantitative PCR study. Mitochondrion 13, 736-742. 

  42. Kasid, U., Suy, S., Dent, P. and Ray, S. 1996. Activation of Raf by ionizing radiation. Nature 382, 813. 

  43. Kasper, M., Traub, O., Reimann, T., Bjermer, L., Grossmann, H., Muller, M. and Wenzel, K. W. 1996. Upregulation of gap junction protein connexin43 in alveolar epithelial cells of rats with radiation-induced pulmonary fibrosis. Histochem. Cell Biol. 106, 419-424. 

  44. K Hei, T., Zhou, H., Chai, Y., Ponnaiya, B. and N Ivanov, V. 2011. Radiation induced non-targeted response: mechanism and potential clinical implications. Curr. Mol. Pharmacol. 4, 96-105. 

  45. Kryston, T. B., Georgiev, A. B., Pissis, P. and Georgakilas, A. G. 2011. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 711, 193-201. 

  46. Larner, J. M., Lee, H. and Hamlin, J. L. 1996. S phase damage sensing checkpoints in mammalian cells. Cancer Surv. 29, 25-45. 

  47. Larsen, N. B., Rasmussen, M. and Rasmussen, L. J. 2005. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5, 89-108. 

  48. LaVerne, J. A. 2004. Charged Particle and Photon Interactions with Matter, pp. 403-429, Marcel Dekker, Inc: Madison Avenue, NY, USA. 

  49. Leach, J. K., Van Tuyle, G., Lin, P. S., Schmidt-Ullrich, R. and Mikkelsen, R. B. 2001. Ionizing radiation-induced, mitochondria- dependent generation of reactive oxygen/ nitrogen. Cancer Res. 61, 3894-3901. 

  50. Lee, H. C., Pang, C. Y., Hsu, H. S. and Wei, Y. H. 1994. Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim. Biophys. Acta. 1226, 37-43. 

  51. Lee, H. C., Yin, P. H., Yu, T. N., Chang, Y. D., Hsu, W. C., Kao, S. Y. and Wei, Y. H., et al. 2001. Accumulation of mitochondrial DNA deletions in human oral tissues-effects of betel quid chewing and oral cancer. Mutat Res Genet Toxicol. Environ. Mutagen. 493, 67-74. 

  52. Lin, J. H. C., Yang, J., Liu, S., Takano, T., Wang, X., Gao, Q. and Nedergaard, M., et al. 2003. Connexin mediates gap junction-independent resistance to cellular injury. J. Neurosci. 23, 430-441. 

  53. Liu, C. S., Tsai, C. S., Kuo, C. L., Chen, H. W., Lii, C. K., Ma, Y. S. and Wei, Y. H. 2003. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic. Res. 37, 1307-1317 

  54. Liu, K., Kasper, M., Bierhaus, A., Langer, S., Muller, M. and Trott, K. R. 1997. Connexin 43 expression in normal and irradiated mouse skin. Radiat. Res. 147, 437-441. 

  55. Iliakis, G., Wang, Y. A., Guan, J. and Wang, H. 2003. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22, 5834-5847. 

  56. Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P. and Darnell, J. 1995. Molecular cell biology Vol. 3, pp. 817-819, Scientific American Books: NY, USA. 

  57. Luckey, T. D. 1980. Hormesis with ionizing radiation, pp. 1- 122, CRC press, Inc: Boca Raton, FL, USA. 

  58. Maity, A., McKenna, W. G. and Muschel, R. J. 1994. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol. 31, 1-13. 

  59. Malakhova, L., Bezlepkin, V. G., Antipova, V., Ushakova, T. Y., Fomenko, L., Sirota, N. and Gaziev, A. I. 2005. The increase in mitochondrial DNA copy number in the tissues of ${\gamma}$ -irradiated mice. Cell. Mol. Biol. Lett. 10, 721. 

  60. Matsumoto, M., Minami, M., Takeda, K., Sakao, Y. and Akira, S. 1996. Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells FEBS Lett. 395, 143-147. 

  61. May, A. and Bohr, V. A. 2000. Gene-specific repair of ${\gamma}$ - ray-induced DNA strand breaks in colon cancer cells: No coupling to transcription and no removal from the mitochondrial genome. Biochem. Biophys. Res. Commun. 269, 433-437. 

  62. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. and Holbrook, N. J. 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249- 1259. 

  63. Michel, S., Wanet, A., De Pauw, A., Rommelaere, G., Arnould, T. and Renard, P. 2012. Crosstalk between mitochondrial (dys) function and mitochondrial abundance. J. Cell. Physiol. 227, 2297-2310. 

  64. Milhas, D., Clarke, C. J. and Hannun, Y. A. 2010. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett. 584, 1887-1894. 

  65. Moretti, L., Cha, Y. I., Niermann, K. J. and Lu, B. 2007. Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? Cell Cycle 6, 793-798. 

  66. Morgan, D. O. 1995. Principles of CDK regulation. Nature 374, 131. 

  67. Morgan, W. F. and Sowa, M. B. 2007. Non-targeted bystander effects induced by ionizing radiation. Mutat. Res. 616, 159-164. 

  68. Mori, K., Kawahara, T., Yoshida, H., Yanagi, H. and Yura, T. 1996. Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic leucine zipper motif is required for the unfolded protein response pathway. Genes Cells 1, 803-817. 

  69. Morishima, N., Nakanishi, K., Tsuchiya, K., Shibata, T. and Seiwa, E. 2004. Translocation of Bim to the endoplasmic reticulum (ER) mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis. J. Biol. Chem. 279, 50375-50381. 

  70. Murphy, M. P. 2009. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13. 

  71. Nias, A. H. W. 1998. An introduction to radiobiology. pp.81-97, 2nd ed., John Wiley & Sons Ltd: Baffins Lane, Chichester, West Sussex PO19 1UD, England. 

  72. Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M. and Ichijo, H., et al. 1998. ASK1 is essential for JNK/SAPK activation by TRAF2. Mol. Cell. 2, 389-395. 

  73. Norbury, C. and Nurse, P. 1992. Animal cell cycles and their control. Annu. Rev. Biochem. 61, 441-468. 

  74. Nugent, S., Mothersill, C. E., Seymour, C., McClean, B., Lyng, F. M. and Murphy, J. E. 2010. Altered mitochondrial function and genome frequency post exposure to ${\gamma}$ -radiation and bystander factors. Int. J. Radiat. Biol. 86, 829-841. 

  75. Oberley, L. W. and Buettner, G. R. 1979. Role of superoxide dismutase in cancer: a review. Cancer Res. 39, 1141-1149. 

  76. Ojima, M., Ishii, K., Hayashi, T. and Ito, A. 2000. Induction of radio-adaptive response in colony formation by low dose X-ray irradiation. Physiol. Chem. Phys. Med. NMR. 33, 41-48. 

  77. Palikaras, K. and Tavernarakis, N. 2014. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56, 182-188. 

  78. Paunesku, T., Haley, B., Brooks, A. and Woloschak, G. E. 2017. Biological basis of radiation protection needs rejuvenation. Int. J. Radiat. Biol. 13, 1-8. 

  79. Pawlik, T. M. and Keyomarsi, K. 2004. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 59, 928-942. 

  80. Petkau, A. 1987. Role of superoxide dismutase in modification of radiation injury. Br. J. Cancer Suppl. 8, 87. 

  81. Platzman, R. L. 1958. Radiation Biology and Medicine. Selected Reviews in the Life Sciences. pp. 15-72, Addison-Wesley Pub. Co: Boston, USA. 

  82. Porvaznik, M. 1979. Tight junction disruption and recovery after sublethal ${\gamma}$ irradiation. Radiat. Res. 78, 233-250. 

  83. Prise, K. M. and O'sullivan, J. M. 2009. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer 9, 351-360. 

  84. Prithivirajsingh, S., Story, M. D., Bergh, S. A., Geara, F. B., Kian Ang, K., Ismail, S. M. and Brock, W. A., et al. 2004. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 571, 227-232. 

  85. Reisz, J. A., Bansal, N., Qian, J., Zhao, W. and Furdui, C. M. 2014. Effects of ionizing radiation on biological molecules - mechanisms of damage and emerging methods of detection. Antioxid. Redox Signal. 21, 260-292. 

  86. Richard, S. M., Bailliet, G., Paez, G. L., Bianchi, M. S., Peltomaki, P. and Bianchi, N. O. 2000. Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res. 60, 4231-4237. 

  87. Richter, C., Park, J. W. and Ames, B. N. 1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85, 6465-6467. 

  88. Sanche, L. 2009. Biological chemistry: Beyond radical thinking. Nature 461, 358-359. 

  89. Schmidt-Ullrich, R. K., Dent, P., Grant, S., Mikkelsen, R. B. and Valerie, K. 2000. Signal transduction and cellular radiation responses. Radiat. Res. 153, 245-257. 

  90. Shoffner, J. M., Lott, M. T., Voljavec, A. S., Soueidan, S. A., Costigan, D. A. and Wallace, D. C. 1989. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl. Acad. Sci. USA 86, 7952-7956. 

  91. Schon, E. A., Rizzuto, R., Moraes, C. T., Nakase, H., Zeviani, M. and DiMauro, S. 1989. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 244, 346-350. 

  92. Sidrauski, C., Chapman, R. and Walter, P. 1998. The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol. 8, 245-249. 

  93. Simons, K. and Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387, 569. 

  94. Sjostedt, S. and Bezak, E. 2010. Non-targeted effects of ionising radiation and radiotherapy. Australas Phys. Eng. Sci. Med. 33, 219-231. 

  95. Somosy, Z., Bognar, G., Horvath, G. and Koteles, G. J. 2003. Role of nitric oxide, cAMP and cGMP in the radiation induced changes of tight junctions in Madin-Darby canine kidney cells. Cell. Mol. Biol. (Noisy-le-grand). 49, 59-63. 

  96. Somosy, Z., Horvath, G., Bognar, G. and Koteles, G. 2003. Structural and functional changes of cell junctions on effect of ionizing radiation. Acta Biol. Szegediensis 47, 19-25. 

  97. Somosy, Z., Horvath, G., Telbisz, A., Rez, G. and Palfia, Z. 2002. Morphological aspects of ionizing radiation response of small intestine. Micron 33, 167-178. 

  98. Somosy, Z. 2000. Radiation response of cell organelles. Micron 31, 165-181. 

  99. Spitz, D. R., Azzam, E. I., Li, J. J. and Gius, D. 2004. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev. 23, 311-322. 

  100. Suy, S., Anderson, W. B., Dent, P., Chang, E. and Kasid, U. 1997. Association of Grb2 with Sos and Ras with Raf-1 upon gamma irradiation of breast cancer cells. Oncogene 15, 53-61. 

  101. Tamminga, J. and Kovalchuk, O. 2011. Role of DNA damage and epigenetic DNA methylation changes in radiation- induced genomic instability and bystander effects in germline in vivo. Curr. Mol. Pharmacol. 4, 115-125. 

  102. Thiagarajah, J. R., Gourmelon, P., Griffiths, N. M., Lebrun, F., Naftalin, R. J. and Pedley, K. C. 2000. Radiation induced cytochrome c release causes loss of rat colonic fluid absorption by damage to crypts and pericryptal myofibroblasts. Gut 47, 675-684. 

  103. Wang, L., Kuwahara, Y., Li, L., Baba, T., Shin, R. W., Ohkubo, Y. and Fukumoto, M., et al. 2007. Analysis of Common Deletion (CD) and a novel deletion of mitochondrial DNA induced by ionizing radiation. Int. J. Radiat. Biol. 83, 433-442. 

  104. Wu, J., Harrison, J. K., Dent, P., Lynch, K. R., Weber, M. J. and Sturgill, T. W. 1993. Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol. Cell. Biol. 13, 4539-4548. 

  105. Xu, Y., Krishnan, A., Wan, X. S., Majima, H., Yeh, C. C., Ludewig, G. and Clair, D. K. S. 1999. Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells. Oncogene 18, 93-102. 

  106. Yakes, F. M. and Van Houten, B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94, 514-519. 

  107. Yamamori, T., Sasagawa, T., Ichii, O., Hiyoshi, M., Bo, T., Yasui, H. and Inanami, O., et al. 2017. Analysis of the mechanism of radiation-induced upregulation of mitochondrial abundance in mouse fibroblasts. J. Radiat. Res. 58, 292-301. 

  108. Yamashita, S., Taguchi, M., Baldacchino, G. and Katsumura, Y. 2010. Radiation chemistry of liquid water with heavy ions: steady-state and pulse radiolysis studies, pp. 325-354, Taylor & Francis: Boca Raton, NY, USA. 

  109. Yorimitsu, T., Nair, U., Yang, Z. and Klionsky, D. J. 2006. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299-30304. 

  110. Zhao, Y., Xue, Y., Oberley, T. D., Kiningham, K. K., Lin, S. M., Yen, H. C. and Clair, D. S., et al. 2001. Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a multistage skin carcinogenesis model. Cancer Res. 61, 6082-6088. 

  111. Zheng, C. F. and Guan, K. L. 1993. Cloning and characterization of two distinct human extracellular signal-regulated kinase activator kinases, MEK1 and MEK2. J. Biol. Chem. 268, 11435-11439. 

  112. Zhou, X., Li, N., Wang, Y., Wang, Y., Zhang, X. and Zhang, H. 2011. Effects of X-irradiation on mitochondrial DNA damage and its supercoiling formation change. Mitochondrion 11, 886-892. 

  113. Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H. and Ron, D., et al. 1998. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982-995. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로