$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Bioconversion of Pinoresinol Diglucoside from Glucose Using Resting and Freeze-Dried Phomopsis sp. XP-8 Cells 원문보기

Journal of microbiology and biotechnology, v.27 no.8, 2017년, pp.1428 - 1440  

Gao, Zhenhong (College of Food Science and Engineering, Northwest A & F University) ,  Rajoka, Muhammad Shahid Riaz (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ,  Zhu, Jing (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ,  Zhang, Zhiwei (College of Food Science and Engineering, Qingdao Agriculture University) ,  Zhang, Yan (College of Food Science and Engineering, Northwest A & F University) ,  Che, Jinxin (College of Food Science and Engineering, Northwest A & F University) ,  Xu, Xiaoguang (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University) ,  Shi, Junling (Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University)

Abstract AI-Helper 아이콘AI-Helper

Phomopsis sp. XP-8 (an endophytic fungus) was previously found to produce pinoresinol diglucoside (PDG), a major antihypertensive compound of Tu-Chung (the bark of Eucommia ulmoides Oliv.), which is widely used in Chinese traditional medicines. In the present study, two bioconversion systems were de...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 05). Thus, we concluded the obtained mathematical model to be accurate and reliable for predicting the PDG production.
본문요약 정보가 도움이 되었나요?

참고문헌 (50)

  1. Luo LF, Wu WH, Zhou YJ, Yan J, Yang GP, Ouyang DS. 2010. Antihypertensive effect of Eucommia ulmoides Oliv. extracts in spontaneously hypertensive rats. J. Ethnopharmacol. 129: 238-243. 

  2. Sih CJ, Ravikumar P, Huang FC, Buckner C, Whitlock JH. 1976. Isolation and synthesis of pinoresinol diglucoside, a major antihypertensive principle of Tu-Chung (Eucommia ulmoides, Oliver). J. Am. Chem. Soc. 98: 5412-5413. 

  3. Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M. 2003. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 51: 508-515. 

  4. Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX, et al. 2010. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol. 10: 115. 

  5. Lee SY, Kwon HK, Lee SM. 2011. SHINBARO, a new herbal medicine with multifunctional mechanism for joint disease: first therapeutic application for the treatment of osteoarthritis. Arch. Pharm. Res. 34: 1773-1777. 

  6. Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ, et al. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440-447. 

  7. Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, et al. 2012. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7: 50-57. 

  8. Hemmati S, Schmidt TJ, Fuss E. 2007. (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett. 581: 603-610. 

  9. Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo R, et al. 2006. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224: 1291-1301. 

  10. Renouard S, Tribalatc M-A, Lamblin F, Mongelard G, Fliniaux O, Corbin C, et al. 2014. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J. Plant Physiol. 171: 1372-1377. 

  11. Wang PC, Ran XH, Luo HR, Ma QY, Liu YQ, Zhou J, et al. 2013. Phenolic compounds from the roots of Valeriana officinalis var. latifolia. J. Braz. Chem. Soc. 24: 1544-1548. 

  12. Wang Q, Wang C, Zuo Y, Wang Z, Yang B, Kuang H. 2012. Compounds from the roots and rhizomes of Valeriana amurensis protect against neurotoxicity in PC12 cells. Molecules 17: 15013-15021. 

  13. Liu WJ, Wang LB. 2010. The lignans from Daphne giraldii Nitsche. Chinese J. Med. Chem. 4: 014. 

  14. Dong X, Yang C, Xu G, Cao S, Fu J, Lin L, et al. 2016. Chemical constituents from Daphne giraldii Nitsche and their contents simultaneous determination by HPLC. Evid. Based Complement. Alternat. Med. 2016: 9492368. 

  15. Wang JL, Liu EW, Zhang Y, Wang T, Han LF, Gao XM. 2012. Validation of a HPLC-tandem MS/MS method for pharmacokinetics study of (+)-pinoresinol-di- ${\beta}$ -D-glucopyranoside from Eucommia ulmoides Oliv extract in rats' plasma. J. Ethnopharmacol. 139: 337-342. 

  16. Liu E, Han L, Wang J, He W, Shang H, Gao X, et al. 2012. Eucommia ulmoides bark protects against renal injury in cadmium-challenged rats. J. Med. Food 15: 307-314. 

  17. Nam JW, Kim SY, Yoon T, Lee YJ, Kil YS, Lee YS, et al. 2013. Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents. Chem. Biodivers. 10: 1322-1327. 

  18. Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC. 2002. Two novel antifungal peptides distinct with a fivedisulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett. 521: 87-90. 

  19. Vermes B, Seligmann O, Wagner H. 1991. Synthesis of biologically active tetrahydro-furofuranlignan-(syringin, pinoresinol)-mono-and bis-glucosides. Phytochemistry 30: 3087-3089. 

  20. Jeong EJ, Seo H, Yang H, Kim J, Sung SH, Kim YC. 2012. Anti-inflammatory phenolics isolated from Juniperus rigida leaves and twigs in lipopolysaccharide-stimulated RAW264. 7 macrophage cells. J. Enzyme Inhib. Med. Chem. 27: 875-879. 

  21. Munin A, Edwards-Levy F. 2011. Encapsulation of natural polyphenolic compounds: a review. Pharmaceutics 3: 793-829. 

  22. Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK, Parks JM, et al. 2012. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnol. Biofuels 5: 1. 

  23. Kao TT, Lin CC, Shia KS. 2015. The total synthesis of retrojusticidin B, justicidin E, and helioxanthin. J. Org. Chem. 80: 6708-6714. 

  24. Shi J, Liu C, Liu L, Yang B, Zhang Y. 2012. Structure identification and fermentation characteristics of pinoresinol diglucoside produced by Phomopsis sp. isolated from Eucommia ulmoides Oliv. Appl. Microbiol. Biotechnol. 93: 1475-1483. 

  25. Zhang Y, Shi J, Gao Z, Yangwu R, Jiang H, Che J, et al. 2015. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components. Appl. Microbiol. Biotechnol. 99: 4629-4643. 

  26. Zhang Y, Shi J, Gao Z, Che J, Shao D, Liu Y. 2016. Comparison of pinoresinol diglucoside production by Phomopsis sp. XP-8 in different media and the characterisation and product profiles of the cultivation in mung bean. J. Sci. Food Agric. 96: 4015-4025. 

  27. Wang W, Shi J, Yang B. 2008. Optimization of conditions for production of pinoresinol diglucosideby a strain of Phoma sp. Trans. Chin. Soc. Agric. Eng. 24: 287-290. 

  28. Liu G, Xiao X, Jiang H, Mei C, Ding Y. 2013. Detection of pH variable in solid-state fermentation process by FT-NIR spectroscopy and BP-Adaboost. Jiangsu Daxue Xuebao 34: 574-578. 

  29. Wang L, Meselhy MR, Li Y, QIN G-W, Hattori M. 2000. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem. Pharm. Bull. 48: 1606-1610. 

  30. Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wahala K, Deyama T, et al. 2001. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 49: 3178-3186. 

  31. Xie LH, Ahn EM, Akao T, Abdel-Hafez AAM, Nakamura N, Hattori M. 2003. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria. Chem. Pharm. Bull. 51: 378-384. 

  32. Zhao J, Shan T, Mou Y, Zhou L. 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 11: 159-168. 

  33. Grishko VV, Tarasova EV, Ivshina IB. 2013. Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochem. 48: 1640-1644. 

  34. Fan L, Dong Y, Xu T, Zhang H, Chen Q. 2013. Gastrodin production from p-2-hydroxybenzyl alcohol through biotransformation by cultured cells of Aspergillus foetidus and Penicillium cyclopium. Appl. Biochem. Biotechnol. 170: 138-148. 

  35. Mikhailova R, Sapunova L, Lobanok A, Yasenko M, Shishko ZF. 2000. Isoelectrophoretic characterization of extracellular polygalacturonases of various Aspergillus alliaceus strains. Microbiology 69: 162-166. 

  36. Fan Y, Yu Y, Jia X, Chen X, Shen Y. 2013. Cloning, expression and medium optimization of validamycin glycosyltransferase from Streptomyces hygroscopicus var. jinggangensis for the biotransformation of validoxylamine A to produce validamycin A using free resting cells. Bioresour. Technol. 131: 13-20. 

  37. Satake H, Ono E, Murata J. 2013. Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J. Agric. Food Chem. 61: 11721-11729. 

  38. Yang Y, Jin Z, Jin Q, Dong M. 2015. Isolation and fatty acid analysis of lipid-producing endophytic fungi from wild Chinese Torreya grandis. Microbiology 84: 710-716. 

  39. Singhania RR, Patel AK, Soccol CR, Pandey A. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J. 44: 13-18. 

  40. Li Y, Peng X, Chen H. 2013. Comparative characterization of proteins secreted by Neurospora sitophila in solid-state and submerged fermentation. J. Biosci. Bioeng. 116: 493-498. 

  41. Pandey A, Selvakumar P, Soccol CR, Nigam P. 1999. Solidstate fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162. 

  42. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541-549. 

  43. Tobimatsu Y, Davidson CL, Grabber JH, Ralph J. 2011. Fluorescence-tagged monolignols: synthesis, and application to studying in vitro lignification. Biomacromolecules 12: 1752-1761. 

  44. Liu C, Shi J, Zhou X, Yang B, Dou X. 2011. Isolation, identification and growth conditions of endophytic fungi of Eucommia ulmoides Oliv. for production of PDG. J. Northwest A. F. Univ. 39: 203-209. 

  45. Feng S, Gan Z, Zhai X, Fu P, Sun W. 2006. Content comparison of pinoresinol diglucoside in original and reborn bark of Eucommia ulmoides. J. Chin. Med. Mater. 29: 792-794. 

  46. Yao LN, Su YF, Yin ZY, Qin N, Li TX, Si CL, et al. 2010. A new phenolic glucoside and flavonoids from the bark of Eucommia ulmoides Oliv. Holzforschung 64: 571-575. 

  47. Golubev W, Kulakovskaya T, Shashkov A, Kulakovskaya E, Golubev N. 2008. Antifungal cellobiose lipid secreted by the epiphytic yeast Pseudozyma graminicola. Microbiology 77: 171-175. 

  48. Cantrell C, Schrader K, Mamonov L, Sitpaeva G, Kustova T, Dunbar C, et al. 2005. Isolation and identification of antifungal and antialgal alkaloids from Haplophyllum sieversii. J. Agric. Food Chem. 53: 7741-7748. 

  49. Qi F, Jing T, Zhan Y. 2012. Characterization of endophytic fungi from Acer ginnala Maxim. in an artificial plantation: media effect and tissue-dependent variation. PLoS One 7: e46785. 

  50. Zhang Y, Shi J, Liu L, Gao Z, Che J, Shao D, Liu Y. 2015. Bioconversion of pinoresinol diglucoside and pinoresinol from substrates in the phenylpropanoid pathway by resting cells of Phomopsis sp. XP-8. PLoS One 10: e0137066. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로