$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

지문분류 기술 동향 분석

Technical Trend Analysis of Fingerprint Classification

초록

대용량 지문 데이터베이스를 사용하는 지문인식 시스템에서 처리 속도와 정확성을 높이기 위해서는 지문을 클래스별로 카테고리화하는 지문분류 기술을 사용해야 한다. 지문분류 방법은 지문 융선으로부터 특징을 추출하고 지문 융선의 흐름과 형상에 따라 정의되어 있는 클래스를 기준으로 학습 및 추론 기법을 이용하여 분류한다. 기존에는 종이에 회전 날인하여 습득된 NIST 데이터베이스를 이용한 연구가 많이 수행되었지만, 지문인식 입력 센서를 이용한 자동화된 시스템이 보편화됨에 따라 FVC에서 공개한 지문 데이터와 같이 센서로부터 입력된 지문 이미지를 이용한 연구가 증가하고 있으며, 최근에는 딥러닝을 이용한 지문분류 방법이 제안되고 있다. 본 논문에서는 지문분류를 위한 특징 추출 및 분류 기술의 동향을 살펴보고 분류성능을 비교한다. 또한 센서 기반 지문 이미지의 다양한 품질을 고려한 지문분류 기술 연구의 필요성에 대하여 정리하고, 딥러닝 기술을 적용한 지문분류 방법을 분석해 봄으로써 지속적으로 사용이 증가되고 있는 대용량 지문 데이터베이스의 분류 기술 연구에 대한 성능향상에 보탬이 되고자 한다.

Abstract

The fingerprint classification of categorizing fingerprints by classes should be used in order to improve the processing speed and accuracy in a fingerprint recognition system using a large database. The fingerprint classification methods extract features from the fingerprint ridges of a fingerprint and classify the fingerprint using learning and reasoning techniques based on the classes defined according to the flow and shape of the fingerprint ridges. In earlier days, many researches have been conducted using NIST database acquired by pressing or rolling finger against a paper. However, as automated systems using live-scan scanners for fingerprint recognition have become popular, researches using fingerprint images obtained by live-scan scanners, such as fingerprint data provided by FVC, are increasing. And these days the methods of fingerprint classification using Deep Learning have proposed. In this paper, we investigate the trends of fingerprint classification technology and compare the classification performance of the technology. We desire to assist fingerprint classification research with increasing large fingerprint database in improving the performance by mentioning the necessity of fingerprint classification research with consideration for fingerprint images based on live-scan scanners and analyzing fingerprint classification using deep learning.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일