$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission 원문보기

Journal of astronomy and space sciences, v.35 no.4, 2018년, pp.243 - 252  

Kim, Pureum (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University) ,  Park, Sang-Young (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University) ,  Kang, Dae-Eun (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University) ,  Lee, Youngro (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • First, the ‘true’ high-rate (100 Hz) position and velocity vectors (in the inertial J2000 frame) of each satellite and the ‘true’ high-rate range values were obtained by propagating their orbits with the help of GMAT.
  • From this study, it is possible to make a rough estimate on the accuracy of geopotential models that can be generated with the data of this hypothetical mission. Additionally, we can estimate the minimum measurement precision that its onboard ranging device must satisfy for the range measurements to be meaningful.
  • In this paper, we will cover the whole process of the simulation, from generating simulated data obtainable from the hypothetical ranging device and POD to extracting gravity fields from the simulated data, and then we will determine the minimum precision requirement for the ranging system. In Section 2, the theory of the crude acceleration approach is explained in detail.
  • In this study, geopotential coefficient recovery was performed on data sets generated and processed by assuming a hypothetical GRACE-like mission. The crude acceleration approach was used in recovering coefficients.
  • Instead, we used three different ways to quantify or visualize the differences between the ‘true’ gravitational coefficients and the obtained ones.
  • Also computable from this output are the ‘true’ ranges for the same time interval. Then we contaminated the true data to generate noisy data, which can be considered a proxy of the imprecise data we would have from POD and the on-board ranging system in a real-life mission. When GPS data is used in the POD process, it is natural that relative position and velocity between the satellites can be determined more precisely than with absolute values.

대상 데이터

  • The Gaussian noise sigmas used for our simulation are given in Table 2. For each range noise sigma, we made 10 sets of random simulation data, so in total, 40 data sets were made.
본문요약 정보가 도움이 되었나요?

참고문헌 (33)

  1. Choi MS, Lim HC, Choi EJ, Park E, Yu SY, et al., Performance analysis of the first Korean satellite laser ranging system, J. Astron. Space Sci. 31, 225-233 (2014). https://doi.org/10.5140/JASS.2014.31.3.225 

  2. Eun Y, Park SY, Kim GN, Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity, Acta Astronaut. 147, 48-58 (2018). https://doi.org/10.1016/j.actaastro.2018.03.030 

  3. Flechtner F, Morton P, Watkins M, Webb F, Status of the GRACE follow-on mission, Proceedings of the International Association of Geodesy (IAU) Symposium GGHS2012, Venice, Italy, 9-12 Oct 2012. 

  4. Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, et al., Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission, J. Geodesy 85, 749-758 (2011). https://doi.org/10.1007/s00190-011-0498-3 

  5. Flury J, Bettadpur S, Tapley BD, Precise accelerometry onboard the GRACE gravity field satellite mission, Adv. Space Res. 42, 1414-1423 (2008). https://doi.org/10.1016/j.asr.2008.05.004 

  6. Gunter B, Ries J, Bettadpur S, Tapley B, A simulation study of the errors of omission and commission for GRACE RL01 gravity fields, J. Geodesy 80, 341-351 (2006). https://doi.org/10.1007/s00190-006-0083-3 

  7. Han SC, Efficient determination of global gravity field from satellite-to-satellite tracking mission, Celest. Mech. Dyn. Astron. 88, 69-102 (2004). https://doi.org/10.1023/B:CELE.0000009383.07092.1f 

  8. Heiskanen WA, Moritz H, Physical Geodesy (W. H. Freeman and Company, San Francisco, 1967). 

  9. Hoffman TL, GRAIL: gravity mapping the Moon, in 2009 IEEE Aerospace Conference, Big Sky, MT, 7-14 Mar 2009. 

  10. Hughes SP, General Mission Analysis Tool (GMAT), NASA Goddard Space Flight Center Technical Report, GSFC-E-DAA-TN29897 (2016). 

  11. Jo JH, Park IK, Lim HC, Seo YK, Yim HS, et al., The design concept of the first mobile satellite ranging system (ARGO-M) in Korea, J. Astron. Space Sci. 28, 93-102 (2011). https://doi.org/10.5140/JASS.2011.28.1.093 

  12. Jung S, Park SY, Park HE, Park CD, Kim SW, et al., Real-time determination of relative position between satellites using laser ranging, J. Astron. Space Sci. 29, 351-362 (2012). https://doi.org/10.5140/JASS.2012.29.4.351 

  13. Kim Y, Park SY, Lee E, Kim M, A deep space orbit determination software: overview and event prediction capability, J. Astron. Space Sci. 34, 139-151 (2017). https://doi.org/10.5140/JASS.2017.34.2.139 

  14. Kim YR, Park ES, Kucharski D, Lim HC, Orbit determination using SLR data for STSAT-2C: short-arc analysis, J. Astron. Space Sci. 32, 189-200 (2015). https://doi.org/10.5140/JASS.2015.32.3.189 

  15. Lee E, Park SY, Shin B, Cho S, Choi EJ, et al., Orbit determination of KOMPSAT-1 and Cryosat-2 satellites using Optical Wide-field Patrol Network (OWL-Net) data with batch least squares filter, J. Astron. Space Sci. 34 , 19-30 (2017a). https://doi.org/10.5140/JASS.2017.34.1.19 

  16. Lee E, Kim Y, Kim M, Park SY, Development, demonstration and validation of the deep space orbit determination software using lunar prospector tracking data, J. Astron. Space Sci. 34, 213-223 (2017b). https://doi.org/10.5140/JASS.2017.34.3.213 

  17. Lee J, Park SY, Kang DE, Relative navigation with intermittent laser-based measurement for spacecraft formation flying, J. Astron. Space Sci. 35, 163-173 (2018). https://doi.org/10.5140/JASS.2018.35.3.163 

  18. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, et al., The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA Goddard Space Flight Center Technical Report, NASA/TP-1998-206861 (1998). 

  19. Lim HC, Bang SC, Yu SY, Seo YK, Park ES, et al., Study on the optoelectronic design for Korean mobile satellite laser ranging system, J. Astron. Space Sci. 28, 155-162 (2011). https://doi.org/10.5140/JASS.2011.28.2.155 

  20. Mayer-Gurr T, Behzadpour S, Ellmer M, Kvas A, Klinger B, et al., ITSG-Grace2016 - Monthly and daily gravity field solutions from GRACE, GFZ Data Services (2016). https://doi.org/10.5880/icgem.2016.007 

  21. Oh H, Park HE, Lee K, Park SY, Park C, Improved GPS-based satellites relative navigation using femtosecond laser relative distance measurements, J. Astron. Space Sci. 33, 45-54 (2016). https://doi.org/10.5140/JASS.2016.33.1.45 

  22. Oh H, Park E, Lim HC, Lee SR, Choi JD, et al., Orbit determination of high-Earth-orbit satellites by satellite laser ranging, J. Astron. Space Sci. 34, 271-280 (2017). https://doi.org/10.5140/JASS.2017.34.4.271 

  23. Reigber C, Schmidt R, Flechtner F, Konig R, Meyer U, et al., An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S, J. Geodyn. 39, 1-10 (2005). https://doi.org/10.1016/j.jog.2004.07.001 

  24. Ries J, Bettadpur S, Eanes R, Kang Z, Ko U, et al., The development and evaluation of the global gravity model GGM05, Center for Space Research at The University of Texas at Austin Technical Report, CSR-16-02 (2016). 

  25. Shang K, Guo J, Shum CK, Dai C, Luo J, GRACE time-variable gravity field recovery using an improved energy balance approach, Geophys. J. Int. 203, 1773-1786 (2015). https://doi.org/10.1093/gji/ggv392 

  26. Shin K, Oh H, Park SY, Park C, Real-time orbit determination for future Korean regional navigation satellite system, J. Astron. Space Sci. 33, 37-44 (2016). https://doi.org/10.5140/JASS.2016.33.1.37 

  27. Tapley BD, Bettadpur S, Watkins M, Reigber C, The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett. 31, L09607 (2004). https://doi.org/10.1029/2004GL019920 

  28. Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, et al., GGM02 - An improved Earth gravity field model from GRACE, J. Geodesy 79, 467-478 (2005). https://doi.org/10.1007/s00190-005-0480-z 

  29. Thomas JB, An analysis of gravity-field estimation based on intersatellite dual-1-way biased ranging, Jet Propulsion Laboratory at California Institute of Technology Technical Report, JPL Publication 98-15 (1999). 

  30. Vallado DA, Fundamentals of astrodynamics and applications, 4th edition (Microcosm Press, Hawthorne, 2013). 

  31. Wei Z, Houtse H, Min Z, Meijuan Y, Xuhua Z, Effect of different inter-satellite range on measurement precision of Earth's gravitational field from GRACE, Geodesy Geodyn. 3, 44-51 (2012). https://doi.org/10.3724/SP.J.1246.2012.00044 

  32. Weigelt M, The acceleration approach, in Global gravity field modeling from satellite-to-satellite tracking data, eds. Naeimi M, Flury J (Springer, Cham, 2017), 97-126. 

  33. Wu SC, Kruizinga G, Bertiger W, Algorithm theoretical basis document for GRACE Level-1B data processing V1.2, Jet Propulsion Laboratory at California Institute of Technology Technical Report, GRACE 327-741 (JPL D-27672) (2006) 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로