$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Satellite Laser Ranging System at Geochang Station 원문보기

Journal of astronomy and space sciences, v.35 no.4, 2018년, pp.253 - 261  

Lim, Hyung-Chul (Korea Astronomy and Space Science Institute) ,  Sung, Ki-Pyoung (Korea Astronomy and Space Science Institute) ,  Yu, Sung-Yeol (Korea Astronomy and Space Science Institute) ,  Choi, Mansoo (Korea Astronomy and Space Science Institute) ,  Park, Eunseo (Korea Astronomy and Space Science Institute) ,  Park, Jong-Uk (Korea Astronomy and Space Science Institute) ,  Choi, Chul-Sung (Korea Astronomy and Space Science Institute) ,  Kim, Simon (Korea Astronomy and Space Science Institute)

Abstract AI-Helper 아이콘AI-Helper

Korea Astronomy and Space Science Institute (KASI) has been developing the space optical and laser tracking (SOLT) system for space geodesy, space situational awareness, and Korean space missions. The SOLT system comprises satellite laser ranging (SLR), adaptive optics (AO), and debris laser trackin...

주제어

표/그림 (13)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Especially the SLR system will participate in the International Laser Ranging Service (ILRS) tracking network after its ranging performance is evaluated. In this study, we address the design and development of the SOLT system and the SLR system performance is evaluated compared with those of the ILRS tracking stations in terms of single-shot ranging precision. It is demonstrated that the SLR system is capable of laser ranging up to GEO satellites with LRAs and shows a good ranging performance to a few millimeters precision.
  • The three systems share numerous subsystems, such as the optical telescope and tracking mount, because they have the same optical path from the primary mirror to the switching mirror. It is designed to be capable of laser ranging up to GEO satellites with an LRA, space objects imaging brighter than magnitude 10, and laser tracking to LEO space debris without an LRA. These systems are operated independently, not simultaneously, by employing a switching mirror feeding the beam path to each system.
  • The design and development of the SOLT system were addressed in this study and the representative observations of the SLR system were both discussed and analyzed for the performance evaluation. The SLR data quality of the ILRS tracking station was evaluated in terms of single-shot precision for the ground target, and Starlette and Lageos satellites.
  • 2017). To improve the OP precision of space objects, the advanced model should consider not only the ranging measurement, but also the shape, structure, and orientation information available from the characterization and identification based on the AO high-resolution imagery. When a laser propagates through the atmosphere, it suffers from the detrimental effects of atmospheric turbulence that results in the focused spot in space being broadened and distorted (Gebhardt 1976).

대상 데이터

  • The SLR module comprises a laser, Tx/Rx optics, and a timing system. The SLR laser is based on a mode-locked Nd:YAG laser system, which has a primary wavelength of 1,064 nm and a secondary wavelength of 532 nm converted by a second harmonic generator for satellite ranging.
  • 1, the SOLT system comprises the SLR, AO, and DLT systems that include a common module and a dedicated module (SLR, AO, or DLT module). The SLR module was developed in collaboration with EOS Space Systems Ltd. in Australia, and the AO module with the Australian National University. The SLR system has two categories in terms of the optical path: monostatic (or common Coudé) system, and bistatic system.
  • 2015), and has been also developing the space optical laser tracking (SOLT) system at the Geochang station for space geodesy, SSA and Korean space missions. The SOLT system consists of the SLR, AO and debris laser tracking (DLT) systems which are composed of a dedicated module and a common module. The three systems are operated independently but not simultaneously by rotating the switching mirror inside the telescope pedestal which feeds the beam path to each system.
  • The common module comprises an optical telescope, tracking mount, weather station, aircraft detection radar, and operating system. The optical telescope is designed as a confocal paraboloid beam expander configuration with a 100 cm clear aperture primary mirror (M1) having a focal ratio of f/1.5. The M1 support design is a passive 9-point axial whiffletree, and the lateral support system utilizes the central hole in the mirror using an Invar flexural system.

이론/모형

  • The single-shot precision is calculated by the normal point algorithm (ILRS 2018) based on the statistical signal processing to remove outliers and noises from raw measure-ments, which means the RMS of fitting residuals for remaining measurements after the signal processing. In the case of the ILRS tracking network, the SLR system performance is evaluated by single-shot precision for three ranging targets: Starlette, Lageos, and ground target.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Bennet F , Price I, Rigaut F, Copeland M, Satellite imaging with adaptive optics on a 1 m telescope, in 17th Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference, Maui, Hawaii, USA, 20-23 Sep 2016. 

  2. 10.1016/j.asr.2014.10.020 Bennett JC , Sang J, Smith C, Zhang K, An analysis of very short-arc orbit determination for low-Earth objects using sparse optical and laser tracking data, Adv. Space Res. 55, 617-629 (2015). 10.1016/j.asr.2014.10.0200273-1177 

  3. 10.5140/JASS.2015.32.3.209 Choi EJ , Bang SC, Sung KP, Lim HC, Jung CG, et al., Design and development of high-repetition-rate satellite laser ranging system, J. Astron. Space Sci. 32, 209-219 (2015). 10.5140/JASS.2015.32.3.209 

  4. 10.5140/JASS.2014.31.3.225 Choi MS , Lim HC, Choi EJ, Park E, Yu SY, et al., Performance analysis of the first Korean satellite laser ranging system, J. Astron. Space Sci. 31, 225-233 (2014). 10.5140/JASS.2014.31.3.225 

  5. 10.1364/AO.15.001479 Gebhardt FG , High power laser propagation, Appl. Opt. 15, 479-2493 (1976). 10.1364/AO.15.001479201652100003-6935 

  6. Greene B , Gao Y, Moore C, Wang Y, Boiko A, et al., Laser tracking of space debris, Proceedings of 13th International Laser Ranging Workshop, Washington D.C., USA, 7-11 Oct 2002. 

  7. Grosse D , Bennet F, Copeland M, d’Orgeville C, Rigaut F, et al., Adaptive optics for satellite imaging and Earth based space debris manoeuvres, Procceedings of 7th European Conference on Space Debris, Darmstadt, Germany, 18-21 Apr 2017. 

  8. Hampf D , Wagner P, Riede W, Optical Technologies for observa-tion of low Earth orbit objects, in 65th International Astro-nautical (IAC) Congress, Toronto, Canada, 29 Sep - 3 Oct 2014. 

  9. ILRS , International Laser Ranging Service website [Internet], cited 2018 Nov 27, available from: https://ilrs.cddis.eosdis.nasa.gov 

  10. 10.1029/JA083iA06p02637 Kessler DJ , Cour-Palais BG, Collision frequency of artificial satellites: the creation of a debris belt, J. Geophys. Res. 38, 2637-2646 (1978). 10.1029/JA083iA06p026370148-0227 

  11. 10.1016/j.asr.2012.08.009 Kirchner G , Koidl F, Friederich F, Buske I, Volker U, et al., Laser measurements to space debris from Graz SLR station, Adv. Space Res. 51, 21-24 (2013). 10.1016/j.asr.2012.08.0090273-1177 

  12. 10.1016/j.asr.2018.02.033 Lejba P , Suchodolski T, Michalek P, Bartoszak J, Schillak S, et al., First laser measurements to space debris in Poland, Adv. Space Res. 61, 2609-2616 (2018). 10.1016/j.asr.2018.02.0330273-1177 

  13. 10.5140/JASS.2011.28.2.155 Lim HC , Bang SC, Yu SY, Seo YK, Park E, et al., Study on the Optoelectronic design for Korean mobile satellite laser ranging system, J. Astron. Space Sci. 28, 155-162 (2011). 10.5140/JASS.2011.28.2.155 

  14. 10.1051/eucass/201304735 Liou J , Engineering and technology challenges for active debris removal, Prog. Propuls. Phys. 4, 735-748 (2013). 10.1051/eucass/201304735 

  15. 10.1016/j.asr.2011.08.005 Mason J , Stupl J, Marshall W, Levit C, Orbital debris-debris collision avoidance, Adv. Space Res. 48, 1643-1655 (2011). 10.1016/j.asr.2011.08.0050273-1177 

  16. Oh H , Park E, Lim HC, Lee SR, Choi JD, et al., Orbit deter-mination of high-Earth-orbit satellites by satellite laser ranging, J. Astron. Space Sci. 34, 271-280 (2017). 10.5140/JASS.2017.34.4.271 

  17. 10.1016/j.asr.2005.03.021 Urschl C , Gurtner W, Hugentobler U, Schaer S, Beutler G, Validation of GNSS orbits using SLR observations, Adv. Space Res. 36, 412-417 (2005). 10.1016/j.asr.2005.03.0210273-1177 

  18. 10.1088/1674-4527/12/2/009 Zhang ZP , Yang FM, Zhang HF, Wu ZB, Chen JP, et al., The use of laser ranging to measure space debris, Res. Astron. Astrophys. 12, 212-218 (2012). 10.1088/1674-4527/12/2/0091674-4527 

  19. Zovaro A , Bennet F, Copeland M, Rigaut F, d’Orgeville C, et al., Harnessing adaptive optics for space debris collision mitigation, in 17th Advanced Maui Optical and Space Surveillance Technologies (AMOS) Conference. Maui, Hawaii, USA, 20-23 Sep 2016. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로