$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor 원문보기

Journal of astronomy and space sciences, v.35 no.4, 2018년, pp.263 - 277  

Hyun, Jeonghoon (Department of Astronomy, Yonsei University) ,  Eun, Youngho (Department of Astronomy, Yonsei University) ,  Park, Sang-Young (Department of Astronomy, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate...

주제어

표/그림 (22)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • It is confirmed that the relative position estimation accuracy decreases remarkably when considering nonlinear perturbations (Lee & Pernicka 2011). In this study, a projected circular orbit (PCO) formation flying scenario was implemented by applying nonlinear perturbations and possible degradation of the sensor resolution in reality.
  • In this study, pose alignment was implemented by the vision system in numerical simulations to verify the feasibility of the system, i.e., that it can be applied to satellite formation flying. The influence of external environmental factors on the performance of formation flying was analyzed, while checking the estimation and control accuracy according to the level of observation error.
  • , that it can be applied to satellite formation flying. The influence of external environmental factors on the performance of formation flying was analyzed, while checking the estimation and control accuracy according to the level of observation error. In order to improve the relative position estimation accuracy even in the presence of nonlinear perturbation, we proposed a performance improvement by combination with a laser sensor.

이론/모형

  • 1999). The relative state between spacecraft can be estimated by using the nonlinear least squares method (Junkins et al. 1999) or the extended Kalman filter (Kim et al. 2007). In addition, a study was conducted for estimation of both the state of a chief and a deputy satellite based on chief coordinates rather than local vertical and local horizontal (LVLH) coordinates (Zhang et al.
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. Alonso R, Crassidis JL, Junkins JL, Vision-based relative navigation for formation flying of spacecraft, in AIAA Guidance, Navigation, and Control Conference and Exhibit, Dever, CO, 14-17 Aug 2000. 

  2. Cheng Y, Crassidis JL, Markley FL, Attitude estimation for large field-of-view sensors, J. Astronaut. Sci. 54, 433-448 (2005). https://doi.org/10.1007/BF03256499 

  3. Crassidis JL, Alonso R, Junkins JL, Optimal attitude and position determination from line-of-sight measurements, J. Astronaut. Sci. 48, 391-408 (2000). 

  4. Crassidis JL, Junkins JL, Optimal Estimation of Dynamic Systems (Chapman & Hall/CRC, New York, 2004). 

  5. Du JW, Vision based navigation system for autonomous proximity operations: an experimental and analytical study, PhD dissertation, Texas A&M University, (2004). 

  6. Eun Y, Park SY, Kim GN, Development of a hardware-inthe-loop testbed to demonstrate multiple spacecraft operations in proximity, Acta Astron. 147, 48-58 (2018). https://doi.org/10.1016/j.actaastro.2018.03.030 

  7. Jung S, Park SY, Park HE, Park C, Kim SW, et al., Real-time determination of relative position between satellites using laser ranging, J. Astron. Space Sci. 29, 351-362 (2012). https://doi.org/10.5140/JASS.2012.29.4.351 

  8. Junkins JL, Hughes DC, Karim P, Pariyapong WV, Visionbased navigation for rendezvous, docking and proximity operation, in Annual AAS Rocky Mountain Guidance and Control Conference, San Diego, CA, 3-7 Feb 1999. 

  9. Kim SG, Crassidis JL, Cheng Y, Fosbury AM, Junkins JL, Kalman filtering for relative spacecraft attitude and position estimation, J. Guid. Control Dyn. 30, 133-143 (2007). https://doi.org/10.2514/1.22377 

  10. Kim Y, Park SY, Lee E, Kim M, A deep space orbit determination software: overview and event prediction capability, J. Astron. Space Sci. 34, 139-151 (2017). https://doi.org/10.5140/JASS.2017.34.2.139 

  11. Lee D, Pernicka HJ, Vision-based relative state estimation using the unscented Kalman filter, Int. J. Aeronaut. Space Sci. 12, 24-36 (2011). https://doi.org/10.5139/IJASS.2011.12.1.24 

  12. Lee E, Park SY, Shin B, Cho S, Choi EJ, et al., Orbit determination of KOMPSAT-1 and Cryosat-2 satellites using optical wide-field patrol network (OWL-Net) data with batch least squares filter, J. Astron. Space Sci. 35, 19-30 (2017a). https://doi.org/10.5140/JASS.2017.34.1.19 

  13. Lee E, Kim Y, Kim M, Park SY, Development, demonstration and validation of the deep space orbit determination software using lunar prospector tracking data, J. Astron. Space Sci. 34, 213-223 (2017b). https://doi.org/10.5140/JASS.2017.34.3.213 

  14. Lee J, Park SY, Kang DE, Relative navigation with intermittent laser-based measurement for spacecraft formation flying, J. Astron. Space Sci. 34, 163-173 (2018). https://doi.org/10.5140/JASS.2018.35.3.163 

  15. Lee K, Oh H, Park HE, Park SY, Park C, Laser-based relative navigation using GPS measurements for spacecraft formation flying, J. Astron. Space Sci. 32, 387-393 (2015). https://doi.org/10.5140/JASS.2015.32.4.387 

  16. Lefferts EJ, Markley FL, Shuster MD, Kalman filtering for spacecraft attitude estimation, J. Guid. Control Dyn. 5, 417-429 (1982). https://doi.org/10.2514/3.56190 

  17. More JJ, The Levenberg-Marquardt algorithm: implementation and theory, in Conference of Numerical Analysis, Dundee, United Kingdom, 28 Jun 1977. 

  18. Oh H, Park HE, Lee K, Park SY, Park C, Improved GPS-based satellites relative navigation using femtosecond laser relative distance measurements, J. Astron. Space Sci. 33, 45-54 (2016). https://doi.org/10.5140/JASS.2016.33.1.45 

  19. Olivieri L, Antonello A, Bettiol A, Branz F, Duzzi M, et al., Microgravity tests in preparation of a tethered electromagnetic docking space demonstration, in 68th International Astronautical Congress, Adelaide, Australia, 25-29 Sep 2017. 

  20. Rodgers LP, Concepts and technology development for the autonomous assembly and reconfiguration of modular space systems, PhD dissertation, MIT (2006). 

  21. Saenz-Otero A, Miller DW, SPHERES: a platform for formation flight research, in Optics and Photonics 2005, San Diego, CA, 31 Jul - 4 Aug 2005. 

  22. Schaub H, Junkins JL, Analytical Mechanics of Aerospace Systems (AIAA, Reston, 2002). 

  23. Shin K, Oh H, Park SY, Park C, Real-time orbit determination of Korea regional navigation satellite system with intersatellite link, MS dissertation, Yonsei University (2016). 

  24. Sim SH, Park SY, Choi KH, Autonomous real-time relative navigation for formation flying satellites, J. Astron. Space Sci. 26, 59-74 (2009). https://doi.org/10.5140/JASS.2009.26.1.059 

  25. Vallado DA, Fundamentals of Astrodynamics and Applications (Springer, Berlin, 2014). 

  26. Wigbert F, Automated Rendezvous and Docking of Spacecraft (Cambridge University Press, Cambridge, 2008). 

  27. Xie Y, Hu J, Wang M, Hu H, Zhang H, Accurate and stable control of Shenzhou spacecraft in rendezvous and docking, Proceedings of the IFAC Symposium on Automatic Control in Aerospace, Wurzburg, Germany, 2-6 September 2013. 

  28. Xing GQ, Parvez SA, Nonlinear attitude state tracking control for spacecraft, J. Guid. Control, Dyn. 24, 624-626 (2001). https://doi.org/10.2514/2.4754 

  29. Xing Y, Cao X, Zhang S, Guo H, Wang F, Relative position and attitude estimation for satellite formation with coupled translational and rotational dynamics, Acta Astron. 67, 455-467 (2010). https://doi.org/10.1016/j.actaastro.2010.04.002 

  30. Zhang L, Yang H, Zhang S, Cai H, Kalman filtering for relative spacecraft attitude and position estimation: a revisit, J. Guid. Control Dyn. 37, 1706-1711 (2014). https://doi.org/10.2514/1.G000204 

  31. Zhang Z, A flexible new technique for camera calibration, IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330-1334 (2000). https://doi.org/10.1109/34.888718 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로