$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

복합미생물 프로바이오틱을 이용한 환경친화적 넙치 순환여과양식시스템에서의 미생물군집 분석
Microbial community analysis of an eco-friendly recirculating aquaculture system for olive flounder (Paralichthys olivaceus) using complex microbial probiotics 원문보기

Korean journal of microbiology = 미생물학회지, v.54 no.4, 2018년, pp.369 - 378  

이채영 (한국해양대학교 환경공학과) ,  김하함 (국립부경대학교 해양바이오신소재학과) ,  알핀이마뉴엘 (한국해양대학교 환경공학과) ,  김홍기 ((주)바요) ,  원성훈 (국립부경대학교 해양바이오신소재학과) ,  배진호 (국립부경대학교 해양바이오신소재학과) ,  배승철 (국립부경대학교 해양바이오신소재학과) ,  고성철 (한국해양대학교 환경공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 순환여과양식시스템(RAS)에 있어서 복합프로바이오틱스의 적용이 넙치의 성장과 병저항성에 미치는 영향과 이 프로바이오틱스를 RAS에 생물증강처리 시 미생물군집 구조 및 수질에 미치는 영향을 평가하고자 실시하였다. RAS 내에서 80미의 넙치치어($25.7{\pm}7.6g$; $15.2{\pm}1.7cm$)에 프로바이오틱스 CES-AQ1를 첨가하여 사료를 제조하여(CES 사료; $1{\times}10^9\;CFU/kg$) 8주일 동안 급이하였다. 이 경우 넙치의 증체율, 비성장속도, 사료효율, 및 단백질 전환효율은 비유수식 양식시스템에 있어서 CON, PIOTC 사료를 처리한 경우에 비해 1.5~2.5배 정도 높게 나타났다. 1주일간 병원균 저항성 시험에 있어서 비유수식에서 항생제함유 사료(OTC)를 급이한 경우와 RAS에서 CES 사료를 처리한 경우간에는 별 차이가 나타나지 않았다. 따라서 이 CES 프로바이오틱스를 RAS에서 넙치를 양식하는데 있어서 항생제 대용으로 활용할 수 있을 것으로 판단되었다. RAS의 생물여과막에서는 가장 높은 미생물다양성이 나타났으며 암모니아의 산화 및 탈질능을 가진 미생물이 관찰되었고, 병원미생물의 성장억제도 관찰되었다. 더구나 RAS 운전 19일 경과 시 암모니아가 0.5 mg/L이하의 농도로 감소하여 양호한 RAS 수질의 유지에 있어서 프로바이오틱스 처리가 효과가 있음이 밝혀졌다. 사료에 프로바이오틱스(CES-AQ1)를 첨가하여 넙치 장내 미생물이 안정화되고 또한 이 프로바이오틱스를 RAS 양식수에도 처리하여 RAS를 운전할 경우 건강한 넙치의 양식과 양호한 수질을 유지할 수 있어서 경제적이고 환경친화적인 넙치양식이 가능할 것으로 판단되었다.

Abstract AI-Helper 아이콘AI-Helper

This study was conducted to evaluate effects of dietary microbial probiotics on the growth and disease resistance of olive flounder (Paralichthys olivaceus) in a recirculating aquaculture system (RAS), and the effects of the probiotic bioaugmentation on the microbial community structure and water qu...

주제어

표/그림 (7)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • At the end of the feeding trial, the total number and weight of the fish in the RAS tank were measured to calculate weight gain (WG), feed efficiency (FE), the specific growth rate (SGR), protein efficiency ratio (PER), and survival rate. In addition, three fish were randomly selected, and their hepatosomatic index (HSI, %), viscerosomatic index (VSI, %), and condition factor (CF) were determined.
  • In this study, an RAS was used to test the possible application of probiotics for olive flounder culture to achieve higher diet efficiency and maintain good water quality. The microbial community was analyzed to understand the effects of dietary probiotics on growth and disease resistance in olive flounder and to address roles of probiotic bioaugmentation in an ecofriendly RAS.
  • In this study, we evaluated the effects of dietary probiotics on growth and disease resistance in olive flounder (Paralichthys olivaceus) as well as the effect of probiotic bioaugmentation on water quality in an eco-friendly RAS during olive flounder aquaculture. WG, the SGR, FE, and the PER of fish fed the CES diet in the RAS were much higher than those of fish fed the CON, PI, and OTC diets in still water systems.
  • Then, library construction, sequencing, and sequencing analyses were performed using a 454 GS FLX Junior Sequencing System (Roche), according to the manufacturer’s protocols.
  • Three other diets were formulated, each of which contained one the following three cultures at 1 × 109 CFU/kg of basal diet: Bacillus subtilis (BS, positive control; Lee et al., 2017), the commercial microbial product CES-AQ1 (CES), and a mixture of the yeast Groenewaldozyma salmanticensis and the bacterium Gluconacetobacter liquefaciens (PI; pure isolates), discovered in this study.

대상 데이터

  • For the experiment, 80 juvenile olive flounder (initial average weight and length, 25.7 ± 7.6 g and 15.2 ± 1.7 cm, respectively) were introduced into the RAS tank (working volume, 500 L).
  • The feeding trial was carried out in an aquarium building at Korea Maritime and Ocean University (Busan, South Korea). Olive flounder were obtained from Uljin Aquaculture (South Korea).
  • 5℃ under a 12-h light/dark period during the experiment. The fish pathogen Edwardsiella tarda (ATCC 15947), was obtained from the Department of Biotechnology, Pukyong National University (Busan, Republic of Korea). The bacterial strain originated from a diseased brook flounder.

이론/모형

  • 1. Schematic of the recirculating aquaculture system (RAS) used in this study.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. Aly SM, Abdel-Galil AY, Abdel-Aziz GA, and Mohamed MF. 2008. Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol. 25, 128-136. 

  2. Awad E and Awaad A. 2017. Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish Immunol. 67, 40-54. 

  3. Balcazar JL, Blas ID, Ruiz-Zarzuela I, Cunningham D, Vendrell D, and Muzquiz JL. 2006. The role of probiotics in aquaculture. Vet. Microbiol. 114, 173-186. 

  4. Banerjee G and Ray AK. 2017. The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci. 115, 66-77. 

  5. Buric M, Blahovec J, and Kouril J. 2016. Feasibility of open recirculating system in temperate climate - a case study. Aquac. Res. 47, 1156-1167. 

  6. Cerda-Cuellar M and Blanch AR. 2004. Determination of Vibrio scophthalmi and its phenotypic diversity in turbot larvae. Environ. Microbiol. 6, 209-217. 

  7. Cerda-Cuellar M, Rossello-Mora RA, Lalucat J, Jofre J, and Blanch A. 1997. Vibrio scophthalmi sp. nov., a new species from turbot (Scophthalmus maximus). Int. J. Syst. Bacteriol. 47, 58-61. 

  8. Chambel J, Severiano V, Baptista T, Mendes S, and Pedrosa R. 2015. Effect of stocking density and different diets on growth of Percula Clownfish, Amphiprion percula (Lacepede, 1802). Springerplus 4, 183. 

  9. Cho SH, Jeon GH, Kim HS, Kim DS, and Kim C. 2013. Effects of dietary Scutellaria baicalensis extract on growth, feed utilization and challenge test of olive flounder (Paralichthys olivaceus). Asian-australas. J. Anim. Sci. 26, 90-96. 

  10. FAO. 2016. Contributing to food security and nutrition for all, p. 200. In The state of world fisheries and aquaculture. 

  11. Fernandes PM, Pedersen LF, and Pedersen PB. 2017. Influence of fixed and moving bed biofilters on micro particle dynamics in a recirculating aquaculture system. Aquac. Eng. 78, 32-41. 

  12. Garcia R and Muller R. 2014. The family Nannocystaceae, pp. 213-229. In Rosenberg E, DeLong EF, Lory S, Stackebrandt, E, and Thompson F. (eds.), The prokaryotes. Springer Berlin Heidelberg, Berlin Heidelberg, Germany. 

  13. Gatesoupe FJ. 1999. The use of probiotics in aquaculture. Aquaculture 180, 147-165. 

  14. Goncalves AT, Valenzuela-Munoz V, and Gallardo-Escarate C. 2017. Intestinal transcriptome modulation by functional diets in rainbow trout: A high-throughput sequencing appraisal to highlight GALT immunomodulation. Fish Shellfish Immunol. 64, 325-338. 

  15. Gregory SP, Dyson PJ, Fletcher D, Gatland P, and Shields RJ. 2012. Nitrogen removal and changes to microbial communities in model flood/drain and submerged biofilters treating aquaculture wastewater. Aquac. Eng. 50, 37-45. 

  16. Jang HM, Kim YB, Choi S, Lee Y, Shin SG, Unno T, and Kim YM. 2018. Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. Environ. Pollut. 233, 1049-1057. 

  17. Keller R, Pedroso MZ, Ritchmann R, and Silva RM. 1998. Occurrence of virulence-associated properties in Enterobacter cloacae. Infect. Immun. 66, 645-649. 

  18. Kim KW, Moniruzzaman M, Kim KD, Han HS, Yun H, Lee S, and Bai SC. 2016. Effects of dietary protein levels on growth performance and body composition of juvenile parrot fish, Oplegnathus fasciatus. Int. Aquat. Res. 8, 239-245. 

  19. KOSTAT (Statistics KOREA). 2018. Agriculture & fishery products. 

  20. Kwon SR, Lee EH, Nam YK, Kim SK, and Kim KH. 2007. Efficacy of oral immunization with Edwardsiella tarda ghosts against edwardsiellosis in olive flounder (Paralichthys olivaceus). Aquaculture 269, 84-88. 

  21. Lee S, Katya K, Park Y, Won S, Seong M, Hamidoghli A, and Bai SC. 2017. Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish Shellfish Immunol. 61, 201-210. 

  22. Lin HL, Shiu YL, Chiu CS, Huang SL, and Liu CH. 2017. Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish Shellfish Immunol. 60, 474-482. 

  23. McBride MJ. 2014. The family Flavobacteriaceae, pp. 643-676. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, and Thompson F. (eds.), The prokaryotes: other major lineages of bacteria and the archaea. Springer Berlin Heidelberg, Berlin Heidelberg, Germany. 

  24. Mezzatesta ML, Gona F, and Stefani S. 2012. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 7, 887-902. 

  25. Midilli A, Kucuk H, and Dincer I. 2012. Environmental and sustainability aspects of a recirculating aquaculture system. Environ. Prog. Sustain. Energy 31, 604-611. 

  26. Mulder A, van de Graaf AA, Robertson LA, and Kuenen JG. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177-183. 

  27. Park Y, Moniruzzaman M, Lee S, Hong J, Won S, Lee JM, Yun H, Kim KW, Ko D, and Bai SC. 2016. Comparison of the effects of dietary single and multi-probiotics on growth, non-specific immune responses and disease resistance in starry flounder, Platichthys stellatus. Fish Shellfish Immunol. 59, 351-357. 

  28. Pungrasmi W, Playchoom C, and Powtongsook S. 2013. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system. J. Environ. Sci. 25, 1557-1564. 

  29. Qiao G, Park SI, and Xu DH. 2012. Clinical, hematological, and biochemical alterations in olive flounder Paralichthys olivaceus following experimental infection by Vibrio scophthalmi. Fish. Aquat. Sci. 15, 233-239. 

  30. Ramirez C and Romero J. 2017. Fine flounder (Paralichthys adspersus) microbiome showed important differences between wild and reared specimens. Front. Microbiol. 8, 271. 

  31. Rud I, Kolarevic J, Holan AB, Berget I, Calabrese S, and Terjesen BF. 2017. Deep-sequencing of the bacterial microbiota in commercialscale recirculating and semi-closed aquaculture systems for Atlantic salmon post-smolt production. Aquac. Eng. 78, 50-62. 

  32. Rurangwa E and Verdegem MCJ. 2015. Microorganisms in recirculating aquaculture systems and their management. Rev. Aquacult. 7, 117-130. 

  33. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann, M., Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. 

  34. Sekar VT, Santiago TC, Vijayan KK, Alavandi, SV, Raj VS, Rajan JJ, Sanjuktha M, and Kalaimani N. 2008. Involvement of Enterobacter cloacae in the mortality of the fish, Mugil cephalus. Lett. Appl. Microbiol. 46, 667-672. 

  35. Srisapoome P and Areechon N. 2017. Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): Laboratory and on-farm trials. Fish Shellfish Immunol. 67, 199-210. 

  36. Tacon AGJ and Metian M. 2015. Feed Matters: Satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 23, 1-10. 

  37. Tsukuda S, Christianson L, Kolb A, Saito K, and Summerfelt S. 2015. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters. Aquac. Eng. 64, 49-59. 

  38. Yamashita MM, Pereira SA, Cardoso L, de Araujo AP, Oda CE, Schmidt EC, Bouzon ZL, Martins ML, and Mourino JLP. 2017. Probiotic dietary supplementation in Nile tilapia as prophylaxis against streptococcosis. Aquac. Nutr. 23, 1235-1243. 

  39. Zhao Y, Zhang W, Xu W, Mai K, Zhang Y, and Liufu Z. 2012. Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 32, 750-755. 

  40. Zhou Q, Li K, Jun X, and Bo L. 2009. Role and functions of beneficial microorganisms in sustainable aquaculture. Bioresour. Technol. 100, 3780-3786. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로