$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암 치료 표적으로서 p53의 구조적 및 기능적 역할
The Structural and Functional Role of p53 as a Cancer Therapeutic Target 원문보기

생명과학회지 = Journal of life science, v.28 no.4 = no.216, 2018년, pp.488 - 495  

한창우 (부산대학교 자연과학대학 분자생물학과) ,  박소영 (부산대학교 자연과학대학 분자생물학과) ,  정미숙 (부산대학교 자연과학대학 분자생물학과) ,  장세복 (부산대학교 자연과학대학 분자생물학과)

초록
AI-Helper 아이콘AI-Helper

p53 유전자는 스트레스, DNA 손상, 저산소증 및 종양 발생에 대한 세포 반응의 전사 조절에서 중요한 역할을 담당한다. 최근에 발견된 다양한 종류의 p53의 생리 활성을 생각한다면 p53이 암 조절에 관여한다는 것은 놀랄만한 일이 아니다. 인간 암의 약 50%에는 p53 유전자의 돌연변이 또는 p53을 활성화시키는 기전의 결함을 통해 p53 단백질 기능의 불활성화가 나타난다. p53 기능의 이러한 장애는 p53 의존 반응으로부터 회피를 허용함으로써 종양의 진화에 결정적인 역할을 하게 된다. 최근의 많은 연구들은 p53의 돌연변이를 대폭 감소시키거나 p53의 종양 억제 기능을 복원하기 위하여 선택적인 저분자 화합물을 동정함으로써 p53의 돌연변이를 직접 표적하는 것에 초점을 두고 있다. 이들 저분자는 좋은 약물과 유사한 특성을 유지하면서 다양한 상호작용을 효과적으로 조절해야 한다. 이 중, p53의 음성조절인자 핵심인 MDM2의 발견은 p53과 MDM2 간의 상호작용을 차단하는 새로운 저분자 억제제의 설계를 제공하였다. 저분자 화합물 중 일부는 개념 증명 연구에서 임상 시험으로 옮겨졌으며 향후 맞춤형 항암제가 추가될 전망이다. 본 리뷰에서는 야생형 p53과 돌연변이 p53의 구조적 및 기능적 중요성과 p53을 직접 표적하는 치료제 개발, p53과 MDM2 간의 상호작용을 억제하는 화합물에 대하여 검토하였다.

Abstract AI-Helper 아이콘AI-Helper

The p53 gene plays a critical role in the transcriptional regulation of cellular response to stress, DNA damage, hypoxia, and tumor development. Keeping in mind the recently discovered manifold physiological functions of p53, its involvement in the regulation of cancer is not surprising. In about 50...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In this review, we summarize the structures of wild-type and mutant p53 and their diverse structural and functional consequences. In addition, we review therapeutic agents that reactivate mutant p53 and the compounds that directly inhibit the interaction between p53 and MDM2, and we look into the prospect of future development of therapeutic agents targeting p53.
  • In addition, p53 and NF-κB crosstalk participates in regulation of tumor cell metabolism [24]. Therefore, the understanding of these processes could contribute towards the design of new therapy for cancer.
본문요약 정보가 도움이 되었나요?

참고문헌 (61)

  1. Bochkareva, E., Kaustov, L., Ayed, A., Yi, G. S., Lu, Y., Pineda-Lucena, A., Liao, J. C., Okorokov, A. L., Milner, J., Arrowsmith, C. H. and Bochkarev, A. 2005. Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc. Natl. Acad. Sci. USA. 102, 15412-15417. 

  2. Brown, C. J., Quah, S. T., Jong, J., Goh, A. M., Chiam, P. C., Khoo, K. H., Choong, M. L., Lee, M. A., Yurlova, L., Zolghadr, K., Joseph, T. L., Verma, C. S. and Lane, D. P. 2013. Stapled peptides with improved potency and specificity that activate p53. ACS Chem. Biol. 8, 506-512. 

  3. Burmakin, M., Shi, Y., Hedstrom, E., Kogner, P. and Selivanova, G. 2013. Dual targeting of wild-type and mutant p53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vivo and in vitro. Clin. Cancer Res. 19, 5092-5103. 

  4. Bykov, V. J. N., Eriksson, S. E., Bianchi, J. and Wiman, K. G. 2018. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 18, 89-102. 

  5. Canadillas, J. M. P., Tidow, H., Freund, S. M. V., Rutherford, T. J., Ang, H. C. and Fersht, A. R. 2006. Solution structure of p53 core domain: Structural basis for its instability. Proc. Natl. Acad. Sci. USA. 103, 2109-2114. 

  6. Chi, S. W. 2014. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 47, 167-172. 

  7. Chi, S. W., Lee, S. H., Kim, D. H., Ahn, M. J., Kim, J. S., Woo, J. Y., Torizawa, T., Kainosho, M. and Han, K. H. 2005. Structural details on mdm2-p53 interaction. J. Biol. Chem. 280, 38795-38802. 

  8. Collavin, L., Lunardi, A. and Del, Sal G. 2010. p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ. 17, 901-911. 

  9. Demir, O., Ieong, P. U. and Amaro, R. E. 2017. Full-length p53 tetramer bound to DNA and its quaternary dynamics. Oncogene 36, 1451-1460. 

  10. Di Lello, P., Jenkins, L. M. M., Jones, T. N., Nguyen, B. D., Hara, T., Yamaguchi, H., Dikeakos, J. D., Appella, E., Legault, P. and Omichinski, J. G. 2006. Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell 22, 731-740. 

  11. Dornan, D., Shimizu, H., Burch, L., Smith, A. J. and Hupp, T. R. 2003. The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol. Cell. Biol. 23, 8846-8861. 

  12. Duan, J. X. and Nilsson, L. 2006. Effect of $Zn^{2+}$ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry 45, 7483-7492. 

  13. Espinoza-Fonseca, L. M. and Trujillo-Ferrara, J. G. 2006. Transient stability of the helical pattern of region F19-L22 of the N-terminal domain of p53: a molecular dynamics simulation study. Biochem. Biophys. Res. Commun. 343, 110-116. 

  14. Feng, H. Q., Jenkins, L. M. M., Durell, S. R., Hayashi, R., Mazur, S. J., Cherry, S., Tropea, J. E., Miller, M., Wlodawer, A., Appella, E. and Bai, Y. 2009. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Structure 17, 202-210. 

  15. Fotouhi, N. and Graves, B. 2005. Small molecule inhibitors of p53/MDM2 interaction. Curr. Top. Med. Chem. 5, 159-165. 

  16. Freed-Pastor, W. A. and Prives, C. 2012. Mutant p53: one name, many proteins. Genes Dev. 26, 1268-1286. 

  17. Grasberger, B. L., Lu, T., Schubert, C., Parks, D. J., Carver, T. E., Koblish, H. K., Cummings, M. D., LaFrance, L. V., Milkiewicz, K. L., Calvo, R. R., Maguire, D., Lattanze, J., Franks, C. F., Zhao, S., Ramachandren, K., Bylebyl, G. R., Zhang, M., Manthey, C. L., Petrella, E. C., Pantoliano, M. W., Deckman, I. C., Spurlino, J. C., Maroney, A. C., Tomczuk, B. E., Molloy, C. J. and Bone, R. F. 2005. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J. Med. Chem. 48, 909-912. 

  18. Halazonetis, T. D., Gorgoulis, V. G. and Bartek, J. 2008. An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355. 

  19. Hiraki, M., Hwang, S. Y., Cao, S., Ramadhar, T. R., Byun, S., Yoon, K. W., Lee, J. H., Chu, K., Gurkar, A. U., Kolev, V., Zhang, J., Namba, T., Murphy, M. E., Newman, D. J., Mandinova, A., Clardy, J. and Lee, S. W. 2015. Small- molecule reactivation of mutant p53 to wild-type-like p53 through the p53-Hsp40 regulatory axis. Chem. Biol. 22, 1206-1216. 

  20. Ho, W. C., Luo, C., Zhao, K., Chai, X., Fitzgerald, M. X. and Marmorstein, R. 2006. High-resolution structure of the p53 core domain: implications for binding small-molecule stabilizing compounds. Acta Crystallogr. D Biol. Crystallogr. 62, 1484-1493. 

  21. Hollstein, M., Sidransky, D., Vogelstein, B. and Harris, C. C. 1991. p53 mutations in human cancers. Science 253, 49-53. 

  22. Huang, L., Yan, Z., Liao, X. D., Li, Y., Yang, J., Wang, Z. G., Zuo, Y., Kawai, H., Shadfan, M., Ganapathy, S. and Yuan, Z. M. 2011. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc. Natl. Acad. Sci. USA. 108, 12001-12006. 

  23. Issaeva, N., Bozko, P., Enge, M., Protopopova, M., Verhoef, L. G., Masucci, M., Pramanik, A. and Selivanova, G. 2004. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat. Med. 10, 1321-1328. 

  24. Johnson, R. F. and Perkins, N. D. 2012. Nuclear $factor-{\kappa}B$ , p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem. Sci. 37, 317-324 

  25. Jeffrey, P. D., Gorina, S. and Pavletich, N. P. 1995. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267, 1498-1502. 

  26. Joerger, A. C. and Fersht, A. R. 2010. The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb. Perspect. Biol. 2, a000919. 

  27. Kamada, R., Toguchi, Y., Nomura, T., Imagawa, T. and Sakaguchi, K. 2016. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers 106, 598-612. 

  28. Karlsson, G. B., Jensen, A., Stevenson, L. F., Woods, Y. L., Lane, D. P. and Sorensen, M. S. 2004. Activation of p53 by scaffold-stabilised expression of Mdm2-binding peptides: visualisation of reporter gene induction at the single-cell level. Br. J. Cancer 91, 1488-1494. 

  29. Khoo, K. H., Andreeva, A. and Fersht, A. R. 2009. Adaptive evolution of p53 thermodynamic stability. J. Mol. Biol. 393, 161-175. 

  30. Khoo, K. H., Verma, C. S. and Lane, D. P. 2014. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat. Rev. Drug Discov. 13, 217-236. 

  31. Koblish, H. K, Zhao, S., Franks, C. F., Donatelli, R. R., Tominovich, R. M., LaFrance, L. V., Leonard, K. A., Gushue, J. M., Parks, D. J., Calvo, R. R., Milkiewicz, K. L., Marugan, J. J., Raboisson, P., Cummings, M. D., Grasberger, B. L., Johnson, D. L., Lu, T., Molloy, C. J. and Maroney, A. C. 2006. Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo. Mol. Cancer Ther. 5, 160-169. 

  32. Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J. and Pavletich, N. P. 1996. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948-953. 

  33. Lambert, J. M., Gorzov, P., Veprintsev, D. B., Soderqvist, M., Segerback, D., Bergman, J., Fersht, A. R., Hainaut, P., Wiman, K. G. and Bykov, V. J. 2009. PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376-388. 

  34. Lane, D. P. and Verma, C. 2012. Mdm2 in evolution. Genes Cancer 3, 320-324. 

  35. Lee, H., Mok, K. H., Muhandiram, R., Park, K. H., Suk, J. E., Kim, D. H., Chang, J., Sung, Y. C., Choi, K. Y. and Han, K. H. 2000. Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J. Biol. Chem. 275, 29426-29432. 

  36. Leroy, B., Anderson, M. and Soussi, T. 2014. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum. Mutat. 35, 672-688. 

  37. Liu, X., Wilcken, R., Joerger, A. C., Chuckowree, I. S., Amin, J., Spencer, J. and Fersht, A. R. 2013. Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41, 6034-6044. 

  38. Lucas, B. S., Fisher, B., McGee, L. R., Olson, S. H., Medina, J. C. and Cheung, E. 2012. An expeditious synthesis of the MDM2-p53 inhibitor AM-8553. J. Am. Chem. Soc. 134, 12855-12860. 

  39. Muller, P. A., Vousden, K. H. and Norman, J. C. 2011. p53 and its mutants in tumor cell migration and invasion. J. Cell Biol. 192, 209-218. 

  40. Olivier, M., Hollstein, M. and Hainaut, P. 2010. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008. 

  41. Oren, M. and Rotter, V. 1999. Introduction: p53 - the first twenty years. Cell. Mol. Life Sci. 55, 9-11. 

  42. Saha, T., Kar, R. K. and Sa, G. 2015. Structural and sequential context of p53: A review of experimental and theoretical evidence. Prog. Biophys. Mol. Biol. 117, 250-263. 

  43. Shangary, S., Qin, D., McEachern, D., Liu, M., Miller, R. S., Qiu, S., Nikolovska-Coleska, Z., Ding, K., Wang, G., Chen, J., Bernard, D., Zhang, J., Lu, Y., Gu, Q., Shah, R. B., Pienta, K. J., Ling, X., Kang, S., Guo, M., Sun, Y., Yang, D. and Wang, S. 2008. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc. Natl. Acad. Sci. USA. 105, 3933-3938. 

  44. Takimoto, R., Wang, W., Dicker, D. T., Rastinejad, F., Lyssikatos, J. and el-Deiry, W. S. 2002. The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol. Ther. 1, 47-55. 

  45. Tan, B. X., Liew, H. P., Chua, J. S., Ghadessy, F. J., Tan, Y. S., Lane, D. P. and Coffill, C. R. 2017. Anatomy of Mdm2 and Mdm4 in evolution. J. Mol. Cell Biol. 9, 3-15. 

  46. Tang, X., Zhu, Y., Han, L., Kim, A. L., Kopelovich, L., Bickers, D. R. and Athar, M. 2007. CP-31398 restores mutant p53 tumor suppressor function and inhibits UVB-induced skin carcinogenesis in mice. J. Clin. Invest. 117, 3753-3764. 

  47. Tuncbag, N., Kar, G., Gursoy, A., Keskin, O. and Nussinov, R. 2009. Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example. Mol. Biosyst. 5, 1770-1778. 

  48. Uversky, V. N. 2016. p53 Proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. Int. J. Mol. Sci. 17, 1874. 

  49. Valente, L. J., Gray, D. H., Michalak, E. M., Pinon-Hofbauer, J., Egle, A., Scott, C. L., Janic, A. and Strasser, A. 2013. p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep. 3, 1339-1345. 

  50. Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N. and Liu, E. A. 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848. 

  51. Vogelstein, B., Lane, D. and Levine, A. J. 2000. Surfing the p53 network. Nature 408, 307-310. 

  52. Wallentine, B. D., Wang, Y., Tretyachenko-Ladokhina, V., Tan, M., Senear, D. F. and Luecke, H. 2013. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue. Acta Crystallogr. D Biol. Crystallogr. 69, 2146-2156. 

  53. Wang, B., Fang, L., Zhao, H., Xiang, T. and Wang, D. 2012. MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells. Acta Biochim. Biophys. Sin. (Shanghai). 44, 685-691. 

  54. Wang, H., Nan, L., Yu, D., Agrawal, S. and Zhang, R. 2001. Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: in vitro and in vivo activities and mechanisms. Clin. Cancer Res. 7, 3613-3624. 

  55. Wang, S., Zhao, Y., Aguilar, A., Bernard, D. and Yang, C. Y. 2017. Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb. Perspect. Med. 7, a026245. 

  56. Wang, Y., Rosengarth, A. and Luecke, H. 2007. Structure of the human p53 core domain in the absence of DNA. Acta Crystallogr. D Biol. Crystallogr. 63, 276-281. 

  57. Webster, G. A. and Perkins, N. D. 1999. Transcriptional Cross Talk between $NF-{\kappa}B$ and p53. Mol. Cell. Biol. 19, 3485-3495. 

  58. Xu, J., Timares, L., Heilpern, C., Weng, Z., Li, C., Xu, H., Pressey, J. G., Elmets, C. A., Kopelovich, L. and Athar, M. 2010. Targeting wild-type and mutant p53 with small molecule CP-31398 blocks the growth of rhabdomyosarcoma by inducing reactive oxygen species-dependent apoptosis. Cancer Res. 70, 6566-6576. 

  59. Zacchi, P., Gostissa, M., Uchida, T., Salvagno, C., Avolio, F., Volinia, S., Ronai, Z., Blandino, G., Schneider, C. and Del Sal, G. 2002. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853-857. 

  60. Zhao, D., Tahaney, W. M., Mazumdar, A., Savage, M. I. and Brown, P. H. 2017. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 74, 4171-4187. 

  61. Zilfou, J. T. Hoffman, W. H., Sank, M., George, D. L. and Murphy, M. 2001. The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell. Biol. 21, 3974-3985. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로