$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Large deflection analysis of a fiber reinforced composite beam

Steel & Composite structures : an international journal, v.27 no.5, 2018년, pp.567 - 576  

Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)

Abstract AI-Helper 아이콘AI-Helper

The objective of this work is to analyze large deflections of a fiber reinforced composite cantilever beam under point loads. In the solution of the problem, finite element method is used in conjunction with two dimensional (2-D) continuum model. It is known that large deflection problems are geomet...

주제어

참고문헌 (109)

  1. Abdelaziz H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. 

  2. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. 

  3. Akbas, S.D. (2013a), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Problems Eng., 2013, 14 p. DOI: 10.1155/2013/871815 

  4. Akbas, S.D. (2013b), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trends Technol., 4(10), 4590-4597. 

  5. Akbas, S.D. (2014), "Large post-buckling behavior of Timoshenko beams under axial compression loads", Struct. Eng. Mech., Int. J., 51(6), 955-971. 

  6. Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stabil. Dyn., 15(4), 1450065. DOI: 10.1142/S0219455414500655 

  7. Akbas, S.D. (2015b), "ost-buckling analysis of axially functionally graded three-dimensional beams", Int. J. Appl. Mech., 7(3), 1550047. DOI: 10.1142/S1758825115500477 

  8. Akbas, S.D. (2015c), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., Int. J., 54(3), 433-451. 

  9. Akbas, S.D. (2015d), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., Int. J., 19(6), 1421-1447. 

  10. Akbas, S.D. (2015e), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1). 

  11. Akbas, S.D. (2016a), "Post-buckling analysis of edge cracked columns under axial compression loads", Int. J. Appl. Mech., 8(8), 1650086. 

  12. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. 

  13. Akbas, S.D. (2016c), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. 

  14. Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. 

  15. Akbas, S.D. (2017b), "Static, Vibration, and Buckling Analysis of Nanobeams", In: Nanomechanics, (A. Vakhrushev Ed.), InTech, pp.123-137. 

  16. Akbas, S.D. (2017c), "Stability of A Non-Homogenous Porous Plate by Using Generalized Differantial Quadrature Method", Int. J. Eng. Appl. Sci., 9(2), 147-155. 

  17. Akbas, S.D. (2017d), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. 

  18. Akbas, S.D. (2017e), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., Int. J., 24(5), 579-589. 

  19. Akbas, S.D. (2017f), "Vibration and static analysis of functionally graded porous plates", J. Appl. Computat. Mech., 3(3), 199-207. 

  20. Akbas, S.D. (2017g), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., Int. J., 6(4), 399-415. 

  21. Akbas, S.D. (2018a), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., Int. J., 26(6), 733-743. 

  22. Akbas, S.D. (2018b), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., Int. J., 26(6), 733-743. DOI: https://doi.org/10.12989/scs.2018.26.6.733 

  23. Akbas, S.D. (2018c), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 185, 293-302. 

  24. Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., Int. J., 44(1), 109-125. 

  25. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., Int. J., 11(5), 403-421. 

  26. Alam, M.A. and Al Riyami, K. (2018), "Shear strengthening of reinforced concrete beam using natural fibre reinforced polymer laminates", Constr. Build. Mater., 162, 683-696. 

  27. Amada, S. and Nagase, Y. (1996), "Analysis of large deflection of bamboo as functionally graded material", Transact. Japan Soc. Mech. Engr., Part A, 62(599), 1672-1676. 

  28. Argyridi, A. and Sapountzakis, E. (2016), "Generalized Warping In Flexural-Torsional Buckling Analysis of Composite Beams", J. Appl. Computat. Mech., 2(3), 152-173. 

  29. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., Int. J., 65(4), 453-464. 

  30. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R., Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. 

  31. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3- unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., Int. J., 14(2), 103-115. 

  32. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. 

  33. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. 

  34. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270. 

  35. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., Int. J., 65(1), 19-31. 

  36. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. 

  37. Benselama, K., El Meiche, N., Bedia, E.A.A. and Tounsi, A. (2015), "Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory", Struct. Eng. Mech., Int. J., 55(1), 47-64. 

  38. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. 

  39. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. 

  40. Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., Int. J., 57(5), 837-859. 

  41. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. 

  42. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. 

  43. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Computat. Methods, 11(6), 1350082. 

  44. Cardoso, J.B., Benedito, N.M. and Valido, A.J. (2009), "Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation", Thin-Wall. Struct., 47(11), 1363-1372. 

  45. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297. 

  46. Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos. Part B: Eng., 50, 171-179. 

  47. Cunedioglu, Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., Int. J., 51(1), 111-130. 

  48. Di Sciuva, M. and Icardi, U. (1995), "Large deflection of adaptive multilayered Timoshenko beams", Compos. Struct., 31(1), 49-60. 

  49. Donthireddy, P. and Chandrashekhara, K. (1997), "Nonlinear thermomechanical analysis of laminated composite beams", Adv. Compos. Mater., 6(2), 153-166. 

  50. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., Int. J., 11(5), 671-690. 

  51. Ebrahimi, F. and Hosseini, S.H.S. (2017), "Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates", Eur. Phys. J. Plus, 132(4), p. 172. 

  52. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595. 

  53. Emam, S.A. and Nayfeh, A.H. (2009), "Postbuckling and free vibrations of composite beams", Compos. Struct., 88(4), 636-642. 

  54. Felippa, C.A. (2018), "Notes on Nonlinear Finite Element Methods". URL: http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/NFEM.Ch11.d/NFEM.Ch11.pdf 

  55. Fraternali, F. and Bilotti, G. (1997), "Nonlinear elastic stress analysis in curved composite beams", Comput. Struct., 62(5), 837-859. 

  56. Ganapathi, M., Patel, B.P., Saravanan, J. and Touratier, M. (1998), "Application of spline element for large-amplitude free vibrations of laminated orthotropic straight/curved beams", Compos. Part B: Eng., 29(1), 1-8. 

  57. Ge, W.J., Ashour, A.F., Ji, X., Cai, C. and Cao, D.F. (2018), "Flexural behavior of ECC-concrete composite beams reinforced with steel bars", Constr. Build. Mater., 159, 175-188. 

  58. Ghazavi, A. and Gordaninejad, F. (1989), "Nonlinear bending of thick beams laminated from bimodular composite materials", Compos. Sci. Technol., 36(4), 289-298. 

  59. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. 

  60. Hebali, H., Tounsi, A., Houari, M. S. A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. 

  61. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. 

  62. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., Int. J., 65(5), 621-631. 

  63. Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402. 

  64. Kim, T. and Dugundji, J. (1993), "Nonlinear large amplitude vibration of composite helicopter blade atlarge static deflection", AIAA Journal, 31(5), 938-946. 

  65. Kocaturk, T. and Akbas, S.D. (2010), "Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material", Struct. Eng. Mech., Int. J., 35(6), 677-697. 

  66. Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., Int. J., 40(3), 347-371. 

  67. Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., Int. J., 41(6), 775-789. 

  68. Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperaturedependent physical properties", Steel Compos. Struct., Int. J., 15(5), 481-505. 

  69. Kolli, M. and Chandrashekhara, K. (1997), "Non-linear static and dynamic analysis of stiffened laminated plates", Int. J. Non-Linear Mech., 32(1), 89-101. 

  70. Krawczuk, M., Ostachowicz, W. and Zak, A. (1997), "Modal analysis of cracked, unidirectional composite beam", Compos. Part B: Eng., 28(5-6), 641-650. 

  71. Kurtaran, H. (2015), "Geometrically nonlinear transient analysis of thick deep composite curved beams with generalized differential quadrature method", Compos. Struct., 128, 241-250. 

  72. Latifi, M., Kharazi, M. and Ovesy, H.R. (2016), "Nonlinear dynamic response of symmetric laminated composite beams under combined in-plane and lateral loadings using full layerwise theory", Thin-Wall. Struct., 104, 62-70. 

  73. Li, Z.M. and Qiao, P. (2015), "Buckling and postbuckling behavior of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression", Eng. Struct., 85, 277-292. 

  74. Li, Z.M. and Yang, D.Q. (2016), "Thermal postbuckling analysis of anisotropic laminated beams with tubular cross-section based on higher-order theory", Ocean Eng., 115, 93-106. 

  75. Liu, Y. and Shu, D.W. (2015), "Effects of edge crack on the vibration characteristics of delaminated beams", Struct. Eng. Mech., Int. J., 53(4), 767-780. 

  76. Loja, M.A.R., Barbosa, J.I. and Soares, C.M.M. (2001), "Static and dynamic behaviour of laminated composite beams", Int. J. Struct. Stabil. Dyn., 1(4), 545-560. 

  77. Machado, S.P. (2007), "Geometrically non-linear approximations on stability and free vibration of composite beams", Eng. Struct., 29(12), 3567-3578. 

  78. Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. 

  79. Mareishi, S., Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Nonlinear free vibration, postbuckling and nonlinear static deflection of piezoelectric fiber-reinforced laminated composite beams", Compos. Part B: Eng., 59, 123-132. 

  80. Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Commun. Nonlinear Sci. Numer. Simul., 14(3), 906-915. 

  81. Manthena, V.R., Lamba, N.K. and Kedar, G.D. (2016), "Springbackward phenomenon of a transversely isotropic functionally graded composite cylindrical shell", J. Appl. Computat. Mech., 2(3), 134-143. 

  82. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175. 

  83. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. 

  84. Mororo, L.A.T., Melo, A.M.C.D. and Parente Jr., E. (2015), "Geometrically nonlinear analysis of thin-walled laminated composite beams", Latin Am. J. Solids Struct., 12(11), 2094-2117. 

  85. Oliveira, B.F. and Creus, G.J. (2003), "Nonlinear viscoelastic analysis of thin-walled beams in composite material", Thin-Wall. Struct., 41(10), 957-971. 

  86. Omidvar, B. and Ghorbanpoor, A. (1996), "Nonlinear FE solution for thin-walled open-section composite beams", J. Struct. Eng., 122(11), 1369-1378. 

  87. Pagani, A. and Carrera, E. (2017), "Large-deflection and postbuckling analyses of laminated composite beams by Carrera Unified Formulation", Compos. Struct., 170, 40-52. 

  88. Pai, P.F. and Nayfeh, A.H. (1992), "A nonlinear composite beam theory", Nonlinear Dyn., 3(4), 273-303. 

  89. Patel, S.N. (2014), "Nonlinear bending analysis of laminated composite stiffened plates", Steel Compos. Struct., Int. J., 17(6), 867-890. 

  90. Patel, B.P., Ganapathi, M. and Touratier, M. (1999), "Nonlinear free flexural vibrations/post-buckling analysis of laminated orthotropic beams/columns on a two parameter elastic foundation", Compos. Struct., 46(2), 189-196. 

  91. Oucif, C., Ouzaa, K. and Mauludin, L.M. (2017), "Cyclic and monotonic behavior of strengthened and unstrengthened square reinforced concrete columns", J. Appl. Computat. Mech. DOI: 10.22055/JACM.2017.23514.1159- 

  92. Salehi, M. and Falahatgar, S.R. (2010), "Geometrically non-linear analysis of unsymmetrical fiber-reinforced laminated annular sector composite plates", Scientia Iranica. Transaction B, Mech. Eng., 17(3), 205. 

  93. Shen, H.S. (2001), "Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties", Comput. Methods Appl. Mech. Eng., 190(40-41), 5377-5390. 

  94. Shen, H.S., Chen, X. and Huang, X.L. (2016), "Nonlinear bending and thermal postbuckling of functionally graded fiber reinforced composite laminated beams with piezoelectric fiber reinforced composite actuators", Compos. Part B: Eng., 90, 326-335. 

  95. Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear bending and thermal postbuckling of functionally graded graphenereinforced composite laminated beams resting on elastic foundations", Eng. Struct., 140, 89-97. 

  96. Singh, G., Rao, G.V. and Iyengar, N.G.R. (1992), "Nonlinear bending of thin and thick unsymmetrically laminated composite beams using refined finite element model", Comput. Struct., 42(4), 471-479. 

  97. Stoykov, S. and Margenov, S. (2014), "Nonlinear vibrations of 3D laminated composite beams", Math. Problems Eng. 

  98. Topal, U. (2017), "Buckling load optimization of laminated composite stepped columns", Struct. Eng. Mech., Int. J., 62(1), 107-111. 

  99. Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. 

  100. Xie, M. and Adams, D.F. (1996), "A nonlinear finite element analysis for composite materials", Finite Elem. Anal. Des., 22(3), 211-223. 

  101. Valido, A.J. and Cardoso, J.B. (2003), "Geometrically nonlinear composite beam structures: Design sensitivity analysis", Eng. Optimiz., 35(5), 531-551. 

  102. Vinson, J.R. and Sierakowski, R.L. (2002), "The behavior of Structures Composed of Composite Materials", Kluwer Academic Publishers, ISBN 978-140-2009-04-4, Netherlands. 

  103. Vo, T.P. and Lee, J. (2009), "Geometrically nonlinear analysis of thin-walled composite box beams", Comput. Struct., 87(3-4), 236-245. 

  104. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. 

  105. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-25. 

  106. Youcef, D.O., Kaci, A., Benzair, A. Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., Int. J., 21(1), 65-74. 

  107. Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. 

  108. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. 

  109. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., Int. J., 26(2), 125-137. 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로