$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

본 논문에서는 손상된 흑백 얼굴 이미지를 컬러로 복원하는 방법을 제안한다. 기존 연구에서는 오래된 증명사진처럼 손상된 흑백 사진에 컬러화 작업을 하면 손상된 영역 주변이 잘못 색칠되는 경우가 있었다. 이와 같은 문제를 해결하기 위해 본 논문에서는 입력받은 사진의 손상된 영역을 먼저 복원한 후 그 결과를 바탕으로 컬러화를 수행하는 방법을 제안한다. 본 논문의 제안 방법은 BEGAN(Boundary Equivalent Generative Adversarial Networks) 모델 기반 복원과 CNN(Convolutional Neural Network) 기반 컬러화의 두 단계로 구성된다. 제안하는 방법은 이미지 복원을 위해 DCGAN(Deep Convolutional Generative Adversarial Networks) 모델을 사용한 기존 방법들과 달리 좀 더 선명하고 고해상도의 이미지 복원이 가능한 BEGAN 모델을 사용하고, 그 복원된 흑백 이미지를 바탕으로 컬러화 작업을 수행한다. 최종적으로 다양한 유형의 얼굴 이미지와 마스크에 대한 실험 결과를 통해 기존 연구에 비해 많은 경우에 사실적인 컬러 복원 결과를 보여줄 수 있음을 확인하였다.

Abstract

In this paper, we propose a method to restore corrupted black and white facial images to color. Previous studies have shown that when coloring damaged black and white photographs, such as old ID photographs, the area around the damaged area is often incorrectly colored. To solve this problem, this paper proposes a method of restoring the damaged area of input photo first and then performing colorization based on the result. The proposed method consists of two steps: BEGAN (Boundary Equivalent Generative Adversarial Networks) model based restoration and CNN (Convolutional Neural Network) based coloring. Our method uses the BEGAN model, which enables a clearer and higher resolution image restoration than the existing methods using the DCGAN (Deep Convolutional Generative Adversarial Networks) model for image restoration, and performs colorization based on the restored black and white image. Finally, we confirmed that the experimental results of various types of facial images and masks can show realistic color restoration results in many cases compared with the previous studies.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일