$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Numerical analysis on the behaviour of reinforced concrete frame structures in fire

Computers & concrete, v.21 no.6, 2018년, pp.637 - 647  

Dzolev, Igor M. (Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad) ,  Cvetkovska, Meri J. (Faculty of Civil Engineering, University "Ss. Cyril and Methodius") ,  Ladinovic, Dorde Z. (Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad) ,  Radonjanin, Vlastimir S. (Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad)

Abstract AI-Helper 아이콘AI-Helper

Numerical approach using finite element method has been used to evaluate the behaviour of reinforced concrete frame structure subjected to fire. The structure is previously designed in accordance with Eurocode standards for the design of structures for earthquake resistance, for the ductility class ...

주제어

참고문헌 (35)

  1. ANSYS(R) Academic Teaching Mechanical (2015), ANSYS Help Documentation, Release 16.0, ANSYS, Inc., Canonsburg. 

  2. ASTM E-119-08a (2008), Standard Test Methods for Fire Tests of Building Construction and Materials, American Society for Testing and Materials, USA. 

  3. Bailey, C. and Ellobody, E. (2009), "Whole-building behaviour of bonded post-tensioned concrete floor plates exposed to fire", Eng. Struct., 31, 1800-1810. 

  4. Bazant, Z. and Oh, B. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16, 155-177. 

  5. Bergheau, J.M. and Fortunier, R. (2008), Finite Element Simulation of Heat Transfer, John Wiley & Sons, Inc., Hoboken, USA 

  6. CEB-FIP (2007), Fire Design of Concrete Structures-Materials, Structures and Modelling (T. Bulletin 38), International Federation for Structural Concrete (fib), Lausanne, Switzerland. 

  7. Ding, J. and Wang, Y. (2008), "Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire", J. Constr. Steel Res., 64, 1086-1102. 

  8. Dwaikat, M. and Kodur, V. (2009), "Response of restrained concrete beams under design fire exposure", J. Struct. Eng., 135(11), 1408-1417. 

  9. Dwaikat, M. and Kodur, V. (2013), "A simplified approach for predicting temperatures in fire exposed steel members", Fire Saf. J., 55, 87-96. 

  10. Dzolev, I., Cvetkovska, M., Ladinovic, D., Radonjanin, V. and Raseta, A. (2016), "Fire analysis of a simply supported reinforced concrete beam using Ansys Workbench", 8th Symposium 2016 Association of Structural Engineers of Serbia, Zlatibor, September. 

  11. Ellobody, E. and Bailey, C. (2009), "Modelling of unbonded posttensioned concrete slabs under fire conditions", Fire Saf. J., 44, 159-167. 

  12. EN 1991-1-2 (2002), Actions on Structures, General Actions, Actions on Structures Exposed to Fire, European Committee for Standardization, Brussels, Belgium. 

  13. EN 1992-1-2 (2004), Design of Concrete Structures, General Rules, Structural Fire Design, European Committee for Standardization, Brussels, Belgium. 

  14. EN 1998-1-1 (2004), Design of Structures for Earthquake Resistance: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels, Belgium. 

  15. Gao, W., Dai, J.G., Teng, J. and Chen, G. (2013), "Finite element modeling of reinforced concrete beams exposed to fire", Eng. Struct., 52, 488-501. 

  16. Gernay, T. and Franssen, J.M. (2012), "A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep", Fire Saf. J., 51, 1-9. 

  17. Hawileh, R. and Naser, M. (2012), "Thermal-stress analysis of RC beams reinforced with GFRP bars", Compos. Part B, 43, 2135-2142. 

  18. Hawileh, R., Naser, M., Zaidan, W. and Rasheed, H. (2009), "Modeling of insulated CFRP-strengthened reinforced concrete T-beam exposed to fire", Eng. Struct., 31, 3072-3079. 

  19. Huang, Z. (2010), "Modelling the bond between concrete and reinforcing steel in a fire", Eng. Struct., 32, 3660-3669. 

  20. Huang, Z., Burgess, I. and Plank, R. (2006), "Behaviour of reinforced concrete structures in fire", Structures in Fire, Fourth International Workshop, Aveiro, May. 

  21. ISO 834 (1975), Fire Resistance Test-Elements of Building Construction, International Standard 834 

  22. Jiang, J. and Usmani A. (2013), "Modeling of steel frame structures in fire using OpenSees", Comput. Struct., 118, 90-99. 

  23. Jiang, Y., Usmani, A. and Welch, S. (2011), "Development of heat transfer modelling capability in OpenSEES for structures in fire", Application of Structural Fire Design, Prague, April. 

  24. Klingsch, E. (2014), "Explosive spalling of concrete in fire", Ph.D. Dissertation, Institut fur Baustatik und Konstruktion, ETH Zurich, Switzerland 

  25. Kodur, V. and Agrawal, A. (2016), "An approach for evaluating residual capacity of reinforced concrete beams exposed to fire", Eng. Struct., 110, 293-306. 

  26. Kodur, V., Naser, M., Pakala, P. and Varma, A. (2013), "Modeling the response of composite beam-slab assemblies exposed to fire", J. Constr. Steel Res., 80, 163-173. 

  27. Lazarevska, M., Knezevic, M., Cvetkovska, M., Ivanisevic, N., Samardzioska, T. and Trombeva-Gavrilovska, A. (2012), "Fireresistance prognostic model for reinforced concrete columns", Gradevinar, 64(7), 565-571. 

  28. Lennon, T. and Moore, D. (2003), "The natural fire safety concept- Full-scale tests at Cardington", Fire Saf. J., 38, 623-643. 

  29. Mirza, O. and Uy, B. (2009), "Behaviour of headed stud shear connectors for composite steel-concrete beams at elevated temperatures", J. Constr. Steel Res., 65, 662-674. 

  30. Pakala, P. and Kodur, V. (2016), "Effect of concrete slab on the behavior of fire exposed subframe assemblies with bolted double angle connections", Eng. Struct., 107, 101-115. 

  31. Talamona, D. and Franssen, J.M. (2005), "A quadrangular shell finite element for concrete and steel structures subjected to fire", J. Fire Protect. Eng., 15, 237-264. 

  32. Tan, K.H. and Nguyen, T.T. (2013), "Structural responses of reinforced concrete columns subjected to uniaxial bending and restraint at elevated temperatures", Fire Saf. J., 60, 1-13. 

  33. Thelandersson, S. (1982), "On the multiaxial behavior of concrete exposed to high temperature", Nucl. Eng. Des., 75, 271-282. 

  34. William, K. and Warnke, E. (1974), "Constitutive model for the triaxial behaviour of concrete", Concrete Struct. Subj. Triax. Stress., 1-30. 

  35. Zhou, C. and Vecchio, F. (2005), "Nonlinear finite element analysis of reinforced concrete structures subjected to transient thermal loads", Comput. Concrete, 2(6), 455-479. 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로