$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Neuro-fuzzy based approach for estimation of concrete compressive strength

Computers & concrete, v.21 no.6, 2018년, pp.697 - 703  

Xue, Xinhua (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University) ,  Zhou, Hongwei (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University)

Abstract AI-Helper 아이콘AI-Helper

Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, ...

주제어

참고문헌 (21)

  1. Ahmed, M.A. and Muhannad, I. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Conrete, 21(1), 47-54. 

  2. Ali, D. (2015), "Prediction of hybrid fibre-added concrete strength using artificial neural networks", Comput. Conrete, 15(4), 503-514. 

  3. Bhoopal, R.S., Singh, R. and Sharma, P.K. (2012), "Adaptive neuro-fuzzy inference system for prediction of effective thermal conductivity of polymer-matrix composites", Model. Nume. Simul. Mater. Sci., 2, 43-50. 

  4. Bilgehan, M. (2011), "A comparative study for the concrete compressive strength estimation using neural network and neuro-fuzzy modeling approaches", Nondestruct. Test. Eva., 26(1), 35-55. 

  5. Chiu, S.L. (1994), "Fuzzy model identification based on cluster estimation", J. Intell. Fuzzy Syst., 2(3), 267-278. 

  6. Chopra, P., Sharma, R.K. and Kumar, M. (2016), "Prediction of compressive strength of concrete using artificial neural network and genetic programming", Adv. Mater. Sci. Eng., 1-10. 

  7. Djavareshkian, M.H. and Esmaeili, A. (2013), "Neuro-fuzzy based approach for estimation of Hydrofoil performance", Ocean Eng., 29, 1-8. 

  8. Faruqi, M.A., Agarwala, R., Sai, J. and Francisco, A. (2015), "Application of artificial intelligence to predict compressive strength of concrete from mix design parameters: a structural engineering application", J. Civil Eng. Res., 5(6), 158-161. 

  9. Gholamreza, A., Ehsan, J. and Zahra, K. (2016), "Predicting of compressive strength of recycled aggregate concrete by genetic programming", Comput. Conrete, 18(2), 155-163. 

  10. Hola, J. and Schabowica, K. (2005), "Application of artificial neural network to determine concrete compressive strength based on non-destructive tests", J. Civil Eng. Manage., 11(1), 23-32. 

  11. Jang, J.S.R. (1993), "ANFIS: adaptive-network-based fuzzy inference system", IEEE T. Syst. Man Cyber., 23(3), 665-685. 

  12. Khan, S.U., Ayub, T. and Rafeeqi, S.F.A. (2013), "Prediction of compressive strength of plain concrete confined with ferrocement using artificial neural network and comparison with existing mathematical models", Am. J. Civil Eng. Arch., 1(1), 7-14. 

  13. Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25, 849-857. 

  14. Mohammed, S., Steffen, G., Abdulkadir, C. and Joost, W. (2016), "Modelling fresh properties of self-compacting concrete using neural network technique", Comput. Conrete, 18(4), 903-921. 

  15. Ni, H.G. and Wang, J.Z. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30(8), 1245-1250. 

  16. Nikoo, M., Moghadam, F.T. and Sadowski, L. (2015), "Prediction of concrete compressive strength by evolutionary artificial neural networks", Adv. Mater. Sci. Eng., 1-8. 

  17. Ramin, T., Hamid, R.S. and Mohsen, S. (2014), "The use of artificial neural networks in predicting ASR of concrete containing nano-silica", Comput. Conrete, 13(6), 739-748. 

  18. Roshani, G.H., Feghhi, S.A.H. and Setayeshi, S. (2015), "Dual-modality and dual-energy gamma ray densitometry of petroleum products using an artificial neural network", Radiat. Meas., 82, 154-162. 

  19. Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE T. Syst. Man Cyber., 15(1), 116-131. 

  20. Yeh, I.C. (1998), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. 

  21. Zadeh, E.E., Feghhi, S.A.H., Roshani, G.H. and Rezaei, A. (2016), "Application of artificial neural network in precise prediction of cement elements percentages based on the neutron activation analysis", Eur. Phys. J. Plus., 131, 167. 

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로