$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Transformations and Their Analysis from a RGBD Image to Elemental Image Array for 3D Integral Imaging and Coding 원문보기

KSII Transactions on internet and information systems : TIIS, v.12 no.5, 2018년, pp.2273 - 2286  

Yoo, Hoon (Dept. Electronics, SangMyung University)

Abstract AI-Helper 아이콘AI-Helper

This paper describes transformations between elemental image arrays and a RGBD image for three-dimensional integral imaging and transmitting systems. Two transformations are introduced and analyzed in the proposed method. Normally, a RGBD image is utilized in efficient 3D data transmission although ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Those mappings and their analysis are not discussed yet in computational integral imaging although some existing systems had utilized a mapping method [12, 20-21]. Here, the contribution of this paper are that we define forward and backward mappings for conversion between a RGBD image and EIA with a set of whole optical parameters. Also we provides their analysis in terms of the processing time and visual quality of the reconstructed 3D images.
  • In this paper, we study the generation of elemental image array from a RGBD image and also introduce two mapping methods and their analysis. Generating EIA from a RGBD image requires a mapping method.
  • To do so, we carry out two experiments regarding computational speed and the hole-free condition. The first experiment is performed based on the computational speed according to the several variables to choose an efficient mapping method. The second experiment is carried out in terms of the image quality with the holes.
  • The first experiment is to measure the computational cost according to some key variables of the two mapping method. The key variables are the number of pixels in each elemental image and that of pixels in an object plane image or RGBD image, denoted by Ne and Np, respectively.
  • These experiments provide an experimental ratio to compare it with its theoretical ratio. To do so, we carry out two experiments regarding computational speed and the hole-free condition. The first experiment is performed based on the computational speed according to the several variables to choose an efficient mapping method.
  • According to this analysis, we can figure out which mapping method is more preferable to apply it to a certain 3D imaging system with a specific parameter set. To verify our methods and analysis, we carry out experiments with RGBD images in terms of the computational processing time and visual quality.

이론/모형

  • In this experiment, the hole-free condition is discussed in terms of the visual quality of the reconstructed integral images for both backward and forward mapping methods. The same test RGBD images shown in Fig.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. G. Lippmann, "La photographic intergrale," Computes-Rendus. Acad. Sci, vol. 146, pp. 446-451, 1908. 

  2. Y. Igarashi, H. Murata, and M. Ueda, "3D display system using a computer generated integral photography," Jpn. J. Appl. Phys., vol. 17, no. 9, pp. 1683-1684, Jan. 1978. 

  3. N. Dodgson, "Autostereoscopic 3D displays," IEEE Computer, vol. 38, no. 8, pp. 31-36, 2005. 

  4. N. S. Holliman, N. A. Dodgson, G. E. Favalora, and L. Pockett, "Three-dimensional displays: a review and applications analysis," IEEE Trans. Broad., vol. 57, no. 2, pp. 362-371, Jun. 2011. 

  5. A. Stern and B. Javidi, "Three-dimensional image sensing, visualization, and processing using integral imaging," Proc. IEEE, vol. 94, no. 3, pp. 591-607, Mar. 2006. 

  6. S. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, "Recent issues on integral imaging and its applications," Journal of Information Display, vol. 15, no. 1, pp.37-46, 2014. 

  7. J.-S. Jang and B. Javidi, "Three-dimensional synthetic aperture integral imaging," Optics Letters, vol. 27, no. 13, pp. 1144-1146, Jul. 2002. 

  8. H. Yoo, "Artifact analysis and image enhancement in three dimensional computational integral imaging using smooth windowing technique," OSA Optics Letters, vol. 36, no. 12, pp. 2107-2109 Jun. 2011. 

  9. H. Yoo, "Depth extraction for 3D objects via windowing technique in computational integral imaging with a lenslet array," Elsevier Optics and Lasers in Engineering, vol. 51, no. 7, pp. 912-915, Jul. 2013. 

  10. H. Yoo, D.-H. Shin, and M. Cho, "Improved depth extraction method of 3D objects using computational integral imaging reconstruction based on multiple windowing techniques," Elsevier Optics and Lasers in Engineering, vol. 66, no. 3, pp. 105-111, Mar. 2015. 

  11. Y. Lee and H. Yoo, "Three-dimensional visualization of objects in scattering medium using integral imaging and spectral analysis," Elsevier Optics and Lasers in Engineering, vol. 77, no. 2, pp. 31-38, Feb. 2016. 

  12. Y. Piao, H. Qua, M. Zhang, and M. Cho, "Three-dimensional integral imaging display system via off-axially distributed image sensing," Optics and Lasers in Engineering, vol. 85, pp. 18-23, Oct. 2016. 

  13. C. Fehn, "A 3D-TV system based on video plus depth information," in Proc. of 37th Asilomar Conf. on IEEE Signals, Systems and Computers, vol. 2, pp. 1529-1533, Nov. 2003. 

  14. C. Fehn, "A 3D-TV approach using depth-image-based rendering (DIBR)," Vis., Imaging, Image Process., pp. 482-487, 2003. 

  15. L. Zhang and W. J. Tam, "Stereoscopic image generation based on depth images for 3D TV," IEEE Trans. Broadcasting., vol. 51, no. 2, pp. 191-199, June 2005. 

  16. F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, "3D mapping with an RGBD camera," IEEE Trans. Robotics, vol. 30, no. 1, Feb. 2014. 

  17. J. Han, L. Shao, D. Xu, and J. Shotton, "Enhanced computer vision with Microsoft Kinect sensor: A review," IEEE Trans. Cybernet., vol. 43, no. 5, Oct. 2013. 

  18. M. Zhao, C.-W. Fu, J. Cai, and T.-J. Cham, "Real-time and temporal-coherent foreground extraction with commodity RGBD camera," IEEE Journal of selected topics in signal processing, vol. 9, no. 3, Apr. 2015. 

  19. C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza, "A dataset for improved RGBD-based object detection and pose estimation for warehouse pick-and-place," IEEE Robot. Auto. Lett., vol. 1, no. 2, pp.1179-1185, July 2016. 

  20. D.-H. Shin, S.-H.Lee, E.-S.Kim, "Optical display of true 3D object in depth-priority integral imaging using an active sensor," Optical Comm., vol. 275, no. 2, pp. 330-334, Jul. 2007. 

  21. G. Li, K.-C. Kwon, G.-H. Shin, J.-S. Jeong, K.-H. Yoo, and N. Kim, "Simplified integral imaging pickup method for real objects using a depth camera," J. Optical Society of Korea, vol. 16, no. 4, pp. 381-385, Dec. 2012. 

  22. D. Hiyama, T. Shimobaba, T. Kakue, and T. Ito, "Acceleration of color computer-generated hologram from RGBD images using color space conversion," Elsevier Optics Communications, vol. 340, no. 1, pp.121-125, Apr. 2015. 

  23. K.-C. Kwon, C. Park, M.-U. Erdeneat, J.-S. Jeong, J.-H. Choi, N. Kim, J.-H. Park, Y.-T. Lim, and K.-H. Yoo, "High speed image space parallel processing for computer-generated integral imaging system," Optics Express, vol. 20, no. 2, pp. 732-740, Jan. 2012. 

  24. Y. Deng, Y. Liu, Q. Dai, Z. Zhang, and Y. Wang, "Depth maps fusion for multiview stereo via matrix completion," IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 5, pp. 566-582, Sept. 2012. 

  25. Y. Deng, Q. Dai, R. Liu, Z. Zhang, and S. Hu, "Low-rank structure learning via nonconvex heuristic recovery," IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 3, pp. 383-396, March 2013. 

  26. Y. Gao, G. Cheung, T. Maugey, P. Frossard, and J. Liang, "Encoder-driven inpainting strategy in multiview video compression," IEEE Trans. Image Process. vol. 25, no. 1, Jan. 2016. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로