$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Adaptive Deadline-aware Scheme (ADAS) for Data Migration between Cloud and Fog Layers

Abstract

The advent of Internet of Things (IoT) and the evident inadequacy of Cloud networks concerning management of numerous end nodes have brought about a shift of paradigm giving birth to Fog computing. Fog computing is an extension of Cloud computing that extends Cloud resources at the edge of the network, closer to the user. Cloud computing has become one of the essential needs of people over the Internet but with the emerging concept of IoT, traditional Clouds seem inadequate. IoT entails extremely low latency and for that, the Cloud servers that are distant and unknown to the user appear to be unsuitable. With the help of Fog computing, the Fog devices installed would be closer to the user that will provide an immediate storage for the frequently needed data. This paper discusses data migration between different storage types especially between Cloud devices and then presents a mechanism to migrate data between Cloud and Fog Layer. We call this mechanism Adaptive Deadline-Aware Scheme (ADAS) for Data migration between Cloud and Fog. We will demonstrate that we can access and process latency sensitive "hot" data through the proposed ADAS more efficiently than with a traditional Cloud setup.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일