$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Energy demands in reinforced concrete wall piers coupled by buckling restrained braces subjected to near-fault earthquake

Steel & Composite structures : an international journal, v.27 no.6, 2018년, pp.703 - 716  

Beiraghi, Hamid (Department of Civil Engineering, Mahdishahr Branch, Islamic Azad University)

Abstract AI-Helper 아이콘AI-Helper

In this study, the different energy demands in reinforced concrete (RC) wall piers, coupled by buckling restrained braces (BRBs), are investigated. As well as this, a single plastic hinge approach (SPH) and an extended plastic hinge (EPH) approach is considered for the wall piers. In the SPH approac...

주제어

참고문헌 (55)

  1. Abdollahzadeh, G. and Banihashemi, M. (2013), "Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)", Steel Compos. Struct., Int. J., 14(6), 621-636. 

  2. ACI 318-11 (2011), Building code requirements for structural concrete and commentary; ACI Committee 318, Farmington Hills, MI, USA. 

  3. ASCE/SEI 7-2010 (2010), Minimum design loads for buildings and other structures; American Society of Civil Engineers. Reston, VA, USA. 

  4. Baker, J.W. (2007), "Quantitative classification of near-fault ground motions using wavelet analysis", Bull. Seismol. Soc. Am., 97(5), 1486-1501. 

  5. Beiraghi, H. (2017a), "Forward directivity near-fault and far-fault ground motion effects on the responses of tall reinforced concrete walls with buckling-restrained brace outriggers", Scientia Iranica. DOI: 10.24200/sci.2017.4205 

  6. Beiraghi, H. (2017b), "Earthquake effects on the energy demand of tall reinforced concrete walls with buckling-restrained brace outriggers", Struct. Eng. Mech., Int. J., 63(4), 521-536. 

  7. Beiraghi, H. and Siahpolo, N. (2016), "Seismic assessment of RC core-wall building capable of three plastic hinges with outrigger", Struct. Des. Tall Special Build., 26(2). DOI: 10.1002/tal.1306 

  8. Beiraghi, H., Kheyroddin, A. and Kafi, M.A. (2015), "Nonlinear fiber element analysis of a reinforced concrete shear wall subjected to earthquake records", Transact. Civil Eng., 39, 409-422. 

  9. Beiraghi, H., Kheyroddin, A. and Kafi, M.A. (2016a), "Forward directivity near-fault and far-fault ground motion effects on the behavior of reinforced concrete wall tall buildings with one and more plastic hinges", Struct. Des. Tall Special Build., 25(11), 519-539. 

  10. Beiraghi, H., Kheyroddin, A. and Kafi, M.A. (2016b), "Energy dissipation of tall core-wall structures with multi-plastic hinges subjected to forward directivity near-fault and far-fault earthquakes", Struct. Des. Tall Special Build., 25(15), 801-820. 

  11. Beiraghi, H., Kheyroddin, A. and Kafi, M.A. (2016c), "Effect of record scaling on the behavior of reinforced concrete core-wall buildings subjected to near-fault and far-fault earthquakes", Scientia Iranica, 24(3), p. 884. 

  12. Bengar, H.A. and Aski, R.M. (2016), "Performance based evaluation of RC coupled shear wall system with steel coupling beam", Steel Compos. Struct., Int. J., 20(2), 337-355. 

  13. Bernal, D. (1994), "Viscous damping in inelastic structural response", J. Struct. Eng., 120(4), 1240-1254. 

  14. Black, C., Makris, N. and Aiken, I. (2002), "Component testing, stability analysis and characterization of buckling-restrained braces", Report No. PEER-2002/08; Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, USA. 

  15. Bosco, M. and Marino, E.M. (2013), "Design method and behavior factor for steel frames with buckling restrained braces", Earthq. Eng. Struct. Dyn., 42(8), 1243-1263. DOI: 10.1002/eqe.2269 

  16. CEN EC8 (2004), Design of Structures for Earthquake Resistance; European Committee for Standardization, Brussels, Belgium. 

  17. Chopra, A.K. (2001), Dynamics of Structures, Prentice-Hall, NJ, USA. 

  18. CSA Standard A23.3-04 (2005), Design of Concrete Structures; Canadian Standard Association, Rexdale, Canada. 

  19. El-Tawil, S., Harries, K.A., Fortney, P.J., Shahrooz, B.M. and Kurama, Y. (2010), "Seismic design of hybrid coupled wall systems: State of the art", J. Struct. Eng., 136(7), 755-769. 

  20. Fahnestock, L.A., Ricles, J.M. and Sause, R. (2007), "Experimental evaluation of a large-scale buckling-restrained braced frame", J. Struc. Eng., 133(9), 1205-1214. 

  21. FEMA P695 (2009), Quantification of Building Seismic Performance Factors (ATC-63 Project); Federal Emergency Management Agency, Washington, D.C., USA. 

  22. Gerami, M. and Sivandi-Pour, A. (2014), "Performance-based seismic rehabilitation of existing steel eccentric braced buildings in near fault ground motions", Struct. Des. Tall Special Build., 23(12), 881-896. 

  23. Ghodsi, T. and Ruiz, J.A.F. (2010), "Pacific earthquake engineering research/seismic safety commission tall building design case study", Struct. Des. Tall Special Build., 19(2), 197-256. 

  24. Harries, K.A. and McNeice, D.S. (2006), "Performance-based design of high-rise coupled wall systems", Struct. Des. Tall Special Build., 15(3), 289-306. 

  25. Harries, K.A. and Gong, B. and Shahrooz, B.M. (2000), "Behavior and design of reinforced concrete, steel and steel-concrete coupling beams", Earthq. Spectra, 16(4), 775-799. 

  26. Jones, P. and Zareian, F. (2013), "Seismic response of a 40-storey buckling-restrained braced frame designed for the Los Angeles region", Struct. Des. Tall Special Build., 22(3), 291-299. DOI: 10.1002/tal.687 

  27. Kalkan, E. and Kunnath, S.K. (2006), "Effects of fling-step and forward directivity on the seismic response of buildings", Earthq. Spectra, 22(2), 367-390. 

  28. Kalkan, E. and Kunnath, S.K. (2007), "Effective cyclic energy as a measure of seismic demand", J. Earthq. Eng., 11(5), 725-751. 

  29. Kalkan, E. and Kunnath, S.K. (2008), "Relevance of absolute and relative energy content in seismic evaluation of structures", Adv. Struct. Eng., 11(1), 1-18. 

  30. Kuwamura, H. and Galambos, T.V. (1989), "Earthquake load for structural reliability", J. Struct. Eng., ASCE, 115(6), 1446-1462. 

  31. LATBSDC (2011), An Alternative Procedure For Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region, Los Angeles Tall Buildings Structural Design Council. 

  32. Luco, N. and Cornell, A. (2007), "Structure-specific scalar intensity measures for near source and ordinary earthquake ground motions", Earthq. Spectra, 23(2), 357-392. 

  33. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", ASCE J. Struct. Eng., 114(8), 1804-1826. 

  34. Merritt, S., Uang, C.M. and Benzoni, G. (2003), Subassemblage testing of star seismic buckling restrained braces; TR-2003/04, University of California at San Diego, La Jolla, CA, USA. 

  35. Mortezaei, A. and Ronagh, H.R. (2013), "Plastic hinge length of reinforced concrete columns subjected to both far-fault and near-fault ground motions having forward directivity", Struct. Des. Tall Special Build., 22(12), 903-926. 

  36. Nguyen, A.H., Chintanapakdee, C. and Hayashikawa, T. (2010), "Assessment of current nonlinear static procedures for seismic evaluation of BRBF buildings", J. Constr. Steel Res., 66(8-9), 1118-1127. 

  37. NZS 3101 (2006), New Zealand Standard, Part 1-The Design of Concrete Structures; Standards New Zealand, Wellington, New Zealand. 

  38. Orakcal, K. and Wallace, J.W. (2006), "Flexural Modeling of reinforced Concrete Walls-Experimental Verification", ACI Struct. J., 103(2), 196-206. 

  39. Palmer, K.D., Christopulos, A.S., Lehman, D.E. and Roeder, C.W. (2014), "Experimental evaluation of cyclically loaded, large-scale, planar and 3-d buckling-restrained braced frames", J. Constr. Steel Res., 101, 415-425. 

  40. Panagiotou, M. and Restrepo, J. (2009), "Dual-plastic hinge design concept for reducing higher-mode effects on high-rise cantilever wall buildings", Earthq. Eng. Struct. Dyn., 38(12), 1359-1380. 

  41. Paulay, T. and Priestley, M.J.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, Wiley, Hoboken, NJ, USA. 

  42. PERFORM-3D (2006), Nonlinear Analysis and Performance Assessment for 3D Structures; V.4, User Guide, Computers and Structures, Inc., Berkeley, CA, USA. 

  43. PERFORM-3D (2011), Nonlinear Analysis and Performance Assessment for 3D Structures; V.4.0.3, Computers and Structures, Inc., Berkeley, CA, USA. 

  44. Powell, G. (2007), "Detailed example of a tall shear wall building using CSI's Perform 3D nonlinear dynamic analysis", Computers and Structures Inc., Berkeley, CA, USA. 

  45. Priestley, M.J.N. and Grant, D.N. (2005), "Viscous damping in seismic design and analysis", J. Earthq. Eng., 9(SP2), 229-255. 

  46. Sahoo, D.R. and Chao, S. (2010), "Performance-based plastic design method for buckling-restrained braced frames", Eng. Struct., 32(9), 2950-2958. 

  47. Shargh, F.H. and Hosseini, M. (2011), "An optimal distribution of stiffness over the height of shear buildings to minimize the seismic input energy", J. Seismol. Earthq. Eng., 13(1), 25-32. 

  48. Simpson, Gumpertz & Heger, Inc. (2009), Detailed Design Write up for BRBF building, Simpson, Gumpertz & Heger, Inc., San Francisco, CA, USA. 

  49. Sivandi-Pour, A., Gerami, M. and Kheyroddin, A. (2015), "Determination of modal damping ratios for non-classically damped rehabilitated steel structures. Iranian Journal of Science and Technology", Transact. Civil Eng., 39(C1), p. 81. 

  50. Somerville, P. (1997), "The characteristics and quantification of near-fault ground motion", Proceedings of the FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway Facilities, Burlingame, CA, USA, May. 

  51. Stewart, J.P., Chiou, S.J., Bray, J.D., Graves, R.W., Somerville, P.G. and Abrahamson, N.A. (2001), "Ground motion evaluation procedures for performance based design", PEER 2001-09; Pacific Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, CA, USA. 

  52. Tsai, K.-C. and Hsiao, P.-C. (2008), "Pseudo-dynamic test of a full-scale CFT/BRB frame-Part II: Seismic performance of buckling-restrained braces and connections", Earthq. Eng. Struct. Dyn., 37(7), pp. 1099-1115. 

  53. Tsai, K.-C., Hsiao, P.-C., Wang, K.-J., Weng, Y.-T., Lin, M.-L., Lin, K.-C., Chen, C.-H., Lai, J.-W. and Lin, S.-L. (2008), "Pseudo-dynamic tests of a full-scale CFT/BRB frame-Part I: Specimen design, experiment and analysis", Earthq. Eng. Struct. Dyn., 37(7), 1081-1098. 

  54. Uang, C.M. and Bertero, V.V. (1997), "Seismic response of an instrumented 13-story steel frame building damaged in the 1994 Northridge earthquake", Earthq. Spectra, 13(1), 131-148. 

  55. Watanabe, A. (1992), "Development of composite brace with a large ductility", Proceedings of the U.S.-Japan Workshop on Composite and Hybrid Structures, (Goel S. and Yamanouchi, H. Ed.), Berkeley, CA, USA, September. 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트