$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Stabilization and solidification of tailings from a traditional gold mine using Portland cement

Environmental engineering research, v.23 no.2, 2018년, pp.189 - 194  

Rachman, Ranno Marlany (Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember) ,  Bahri, Ayi Syaeful (Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember) ,  Trihadiningrum, Yulinah (Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember)

Abstract AI-Helper 아이콘AI-Helper

The traditional gold mining in Kulon Progo district, Special Region of Yogyakarta Province produced tailings containing mercury (Hg) from the gold amalgamation process. Mercury accumulated in tailings has 164.19 mg/kg - 383.21 mg/kg in total concentration. Stabilization/solidification (S/S) is one o...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • In this study, the precipitates and carbonates formed were mercury (II) oxide, mercury (II) hydroxide, and mercury (II) carbonate. The formation of hydroxide precipitates and carbonate salts on mercury was evidenced by the value of TCLP obtained in this study. The result of mercury TCLP had a much lower than the quality standard, so it could be concluded that mercury was well bonded in the form of hydroxide precipitates and carbonate salts.

가설 설정

  • Calcium silicate hydrate and calcium aluminate hydrate plays the main roles in hardening and cement resistance. In this study, the soil contained in clay-type tailings might have silica and aluminate content. According to Faisal [30], reactions that occur between Ca(OH)2 and SiO2 can be written as follows:
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. Lottermoser BG. Mine wastes characterization, treatment and environmental impacts. 3rd ed. London; 2010. 

  2. Setiabudi BT. Distribution of mercury due to gold mining business in Sangon Region Kulon Progo Regency DI Yogyakarta. Colloquium Field Results. 2005. 

  3. Larasati R, Setyono P, Sambowo KA. Economic valuation of externality of mercury in the people's gold mining and the role of local government overcoming mercury pollution case study of mining of people's gold in Kulon Progo District. Ekosains 2012;4:48-63. 

  4. Ogola JS, Mitullah WV, Omulo MA. Impact of gold mining on the environment and human health: A case study in the Migori Gold Belt, Kenya. Environ. Geochem. Health 2002;24:141-157. 

  5. Telmer K, Stapper DA. Practical guide: Reducing mercury use in artisanal and small scale gold mining. United Nations Environment Programme. Nairobi Kenya: Geneva, Switzerland; 2012. 

  6. Government Regulation of the Republic of Indonesia No. 101 Year 2014 on the Management of Hazardous and Toxic Waste. 

  7. Fox RD. Physical/chemical treatment of organically contaminated soils and sediments. J. Air Waste Manag. Assoc. 1996;46:391-413. 

  8. Pavel LV, Gavrilescu M. Overview of ex situ decontamination techniques for soil cleanup. Environ. Eng. Manag. J. 2008:7:815-834. 

  9. Andres A, Ibanez R, Ortiz I, Irabien JA. Experimental study of the waste binder anhydrite in the solidification/stabilization process of heavy metal sludge's. J. Hazard. Mater. 1998;57:155-168. 

  10. Chang JE, Lin TT, Ko MS, Liaw DS. Stabilization/solidification of sludges containing heavy metals by using cement and waste pozzolans. J. Environ. Sci. Health Part A. 1999;34:1143-1160. 

  11. Yang YC, Min GB. Solidification/stabilization of soil contaminated with metal: A review. J. Inst. Eng. Malaysia 2008;69:37-43. 

  12. Antemir A, Hills CD, Careya PJ, Magnieb MC, Polettini A. Investigation of 4 years old stablised/solidified and accelerated carbonated contaminated soil. J. Hazard. Mater. 2010;181:543-555. 

  13. Weitzman L. Factor for selecting appropriate solidification/stabilization methods. J. Hazard. Mater. 1990;24:157-168. 

  14. Ganjidoust H, Hassani A, Ashkiki AB. Cement based solidification/stabilization of heavy metal contaminated soils with the objective of achieving high compressive strength for the final matrix. Scientia Iranica 2009;2:107-115. 

  15. Karamalidis AK, Voudrias EA. Cement based stabilization/solidification of oil refinery sludge: Leaching behavior of alkanes and PAHs. J. Hazard. Mater. 2007;148:122-135. 

  16. Volgar EG, Lestan D. Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives. J. Hazard. Mater. 2011;192:753-762. 

  17. FRTR. Soil, sediment, bedrock and sludge treatment technologies. Solidification/stabilization USEPA, 401 M Street, S.W., Washington D.C. 1999. https://frtr.gov/matrix2/section4/4-8.html. 

  18. US EPA. Methods for collection. Storage and manipulation of sediments for chemical and toxicological analyses technical manual. Washington: U.S. Environmental Protection Agency. 2001. 

  19. Rachman RM, Karisma ED, Trihadiningrum Y. Stabilization/solidification of mercury contaminated soil of traditional gold mining in Kulon Progo Yogyakarta, Indonesia using a mixture of Portland cement and tras soil. ARPN J. Eng. Appl. Sci. 2017;12:6380-6387. 

  20. Decree of the Head of Environmental Impact Management Agency no. 03 of 1995 on Technical requirements for processing hazardous wastes of hazardous materials. Environmental Impact Control Agency. 

  21. US EPA. Toxicity characteristic leaching procedure. Washington: U.S. Environmental Protection Agency. 1992. 

  22. Pollard SJT, Montgomery DM, Sollars CJ, Perry R. Organic compounds in the cement-based stabilization/solidification of hazardous mixed wastes-mechanistic and process considerations. J. Hazard. Mater. 1991;28:313-327. 

  23. Yurmansyah I. The importance of concrete care to achieve strength values. R & B 2001;2:1-7. 

  24. Raheem AA, Soyingbe AA, Emenike AJ. Effect of curing method's on density and compressive strength of concrete. Int. J. Appl. Sci. Technol. 2013;3:55-64. 

  25. Amankwah EO, Bediako M, Kankam CK. Influence of calcined clay pozzolana on strength characteristics of Portland cement concrete. Int. J. Mater. Sci. Appl. 2014;3:410-419. 

  26. He C, Osb?k B, Makovicky E. Pozzolanic reactions of six principal clay minerals activation reactivity assessments and technological effects. Cement Concrete Res. 1995;25:1691-1702. 

  27. Mahasneh BZ, Shawabkeh RA. Compressive strength and permeability of sand-cement-clay composite and application for heavy metals stabilization. Am. J. Appl. Sci. 2004;4:1-4. 

  28. Sari E. Study of the utilization of Abu incinerator of TPA Keputih as cement mixture material to bind Cu heavy metals with solidification-stabilization process [thesis]. Environmental engineering department of Institut Teknologi Sepuluh Nopember (ITS). Surabaya; 2000. 

  29. Dembovskaa L, Bajarea D, Pundieneb I, Vitolaa L. Effect of pozzolanic additives on the strength development of high performance concrete. Procedia Eng. 2016;172:202-210. 

  30. Faisal S. Stabilization solidification of mercury soil simulation using Portland cement and fly ash [thesis]. Environmental engineering department of Institut Teknologi Sepuluh Nopember (ITS). Surabaya; 2015. 

  31. Trihadiningrum Y. Waste management of hazardous and toxic substances (B3). ITS Press: Surabaya; 2000. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트