$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

단일 클래스 분류기를 사용한 차량 해킹 탐지

Detection of Car Hacking Using One Class Classifier

초록

본 논문에서는 단일 클래스만을 학습하여 차량에 대한 새로운 공격을 탐지한다. 분류 성능 평가를 위해 Car-Hacking 데이터셋을 사용한다. Car-Hacking 데이터셋은 실제 차량의 OBD-II 포트를 통해 CAN (Controller Area Network) 트래픽을 로깅하여 생성된다. 이 데이터셋에는 네 가지 공격 유형이 포함된다. 실험에 사용한 단일 클래스 분류기법은 정상 클래스만을 학습하여 비정상인 공격 클래스를 분류해내는 비지도 학습이다. 비지도 학습 방법을 사용하는 경우에 훈련 과정에서 네거티브 인스턴스를 사용하지 않기 때문에 고효율의 분류 성능을 내는 것은 어렵다. 하지만, 비지도 학습은 라벨이 없는 새로운 공격 데이터를 분류하는데 적합한 장점이 있다. 본 연구에서는 네트워크 침입탐지 시스템에서 서명기반의 규칙으로 탐지하기 어려운 새로운 공격 유형을 탐지하기 위해 단일 클래스 분류기를 사용한다. 제안 방법은 새로운 공격을 모두 탐지하고 정상데이터에 대해서도 효율적인 분류 성능을 보이는 파라미터 조합을 제시한다.

Abstract

In this study, we try to detect new attacks for vehicle by learning only one class. We use Car-Hacking dataset, an intrusion detection dataset, which is used to evaluate classification performance. The dataset are created by logging CAN (Controller Area Network) traffic through OBD-II port from a real vehicle. The dataset have four attack types. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve high efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data, which are new attacks. In this study, we use one class classifier to detect new attacks that are difficult to detect using signature-based rules on network intrusion detection system. The proposed method suggests a combination of parameters that detect all new attacks and show efficient classification performance for normal dataset.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일