$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

기계적 활성화처리한 블랙드로스의 염산 침출
Hydrochloric Acid Leaching Behavior of Mechanically Activated Black Dross 원문보기

資源리싸이클링 = Journal of the Korean Institute of Resources Recycling, v.27 no.3, 2018년, pp.78 - 85  

(목포대학교 신소재공학과) ,  (목포대학교 신소재공학과) ,  이만승 (목포대학교 신소재공학과)

초록
AI-Helper 아이콘AI-Helper

블랙드로스에 함유된 알루미나를 회수하기 위해 볼밀처리가 염산침출에 미치는 영향을 조사하였다. 볼밀처리 시간과 회전속도는 알루미나 침출에 큰 영향을 미치지 않았다. 최적의 볼밀처리(1시간, 700 rpm)에서 알루미나 침출은 침출시간과 온도에 영향을 받았다. 본 논문의 실험조건에서 산화마그네슘은 모두 용해되었으며, 칼륨, 철, 실리콘과 타이타늄 산화물은 일부만 용해되었다. 알루미나는 80% 정도 침출되었지만 상기 산화물이 미량 용해되므로 순수한 알루미나용액을 회수하기 위해서는 분리공정의 도입이 필요하다.

Abstract AI-Helper 아이콘AI-Helper

Effect of ball milling treatment on the hydrochloric acid leaching performance of black dross was investigated to recover alumina. Ball milling time and speed showed limited effect on the leaching behavior of the alumina in the mechanically dross. Under the optimum mechanical activation condition (f...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In fact, little information has been reported on the leaching of the oxides from mechanically activated black dross using hydrochloric acid solution. In order to compare the leaching behavior of mechanically activated black dross between NaOH and HCl solution, ball milling treatment followed by HCl leaching was investigated in this work. For this purpose, the effect of ball milling time and speed on the leaching behavior of the oxides was investigated.
  • In order to investigate the effect of HCl concentration on the leaching of the oxides from the black dross mechanically activated for 1 h at 700 rpm, a series of leaching experiments were performed by varying HCl concentration from 1 to 7 M for 2 h at 50℃. In these experiments, the pulp density was kept at 20 g/L.
  • . In order to investigate the effect of ball milling time on leaching behavior of the oxides in black dross, ball milling time was varied from 1 h to 10 h and then the mechanically activated black dross was leached using 3 M HCl solution at 50℃ for 2h at a stirring speed of 200 rpm. The leaching percentage of the oxides from the unactivated and mechanically activated black dross is shown in Fig.
  • In order to recover alumina from black dross, a combined process consisting of ball milling treatment and HCl leaching was investigated. Ball milling time and speed did not show a significant effect on the leaching behavior of the oxides in black dross but the filterability was improved.
  • A vertical planetary ball mill (Fritsch Pulverisette 7 Bead Mill) with a rotation speed up to 800 rpm was employed in the ball milling treatment of the black dross after water treatment. Mechanically activated samples were prepared as follows: 8 g of the black dross was added into a vessel containing 40 g agate balls (a ball of 6 mm in diameter) with the weight ratio of ball/black dross of 5:1 and then milled for 1, 3, 5, 7 and 10 h at the milling speed of 400 rpm. In the case of effect of milling speed, the samples were milled at 250, 400, 550 and 700 rpm for 1h at the ball to powder weight ratio of 5:1.
본문요약 정보가 도움이 되었나요?

참고문헌 (25)

  1. Sarker, M. S. R., Alam, M. Z., Qadir, M. R., Gafur, M. A., and Moniruzzaman, M., 2015 : Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process, Int. J. Miner. Metall. Mater., 22, pp.429-436. 

  2. Tsakiridis, P. E., P. Oustadakis, and Agatzini-Leonardou, S., 2013 : Aluminium recovery during black dross hydrothermal treatment, J. Environ. Chem. Eng., 1, pp.23-32. 

  3. David, E. and Kopac, J., 2016 : Hydrolysis of aluminum dross material to achieve zero hazardous waste, J. Hazard. Mater., 209-210, pp.501-509. 

  4. Meshram, A. and Singh, K. K., 2018 : Recovery of valuable products from hazardous aluminum dross: A review, Resour. Conserv. Recycl., 130, pp.95-108. 

  5. Bruckard, W. J. and Woodcock, J. T., 2007 : Characterisation and treatment of Australian salt cakes by aqueous leaching, Miner. Eng., 20, pp.1376-1390. 

  6. Dash, B., Das, B. R., Tripathy, B. C., Bhattacharya, I. N., and Das, S. C., 2008 : Acid dissolution of alumina from waste aluminium dross, Hydrometallurgy, 92, pp.48-53. 

  7. Nguyen, T. T. N., Lee, M. S., and Nguyen, T. H., 2018 : Ball milling treatment of black dross for selective dissolution of alumina in sodium hydroxide leaching, Processes 2018, 6 (4), pp.1-11. 

  8. Valeev, D., Pak, V., Mikhailova, A., Govdberg, M., Zheleznyi, M., Dorofievich, I., Lainer, Y., Bychinskii, V., and Chudnenko, K., 2016 : Extraction of aluminium by autoclave hydrochloric acid leaching of boehmite-kaolinite bauxite, TMS Light Met., pp.23-28. 

  9. Boukerche, I., Djerad, S., Benmansour, L., Tifouti, L., and Saleh, K., 2014 : Degradability of aluminum in acidic and alkaline solutionsm, Corros. Sci., 78, pp.343-352. 

  10. Nguyen, T. T. N., Nguyen, T. H., and Lee, M. A., 2017 : Leaching of Black dross by hydrochloric acid solutions, J. of Korean Inst. of Resources Recycling, 26(6), pp.58-64. 

  11. Xing, W. D., Ahn, B. D., and Lee, M. S., 2017 : Treatment of black dross with water and NaOH solution, J. Kirr., 26, pp.53-60. 

  12. Han, Q., Setchi, R., and Evans, S. L., 2017 : Characterisation and milling time optimisation of nanocrystalline aluminium powder for selective laser melting. Int. J. Adv. Manuf. Technol., 88, pp.1429-1438. 

  13. Tokoro, C., Suzuki, S., Haraguchi, D., and Izawa, S., 2014 : Silicate removal in aluminum hydroxide co-precipitation process. Materials (Basel). 7, pp.1084-1096. 

  14. Willey, J. D., 1975 : Reactions which remove dissolved alumina from seawater. Mar. Chem., 3, pp.227-240. 

  15. Hem, J. D., Roberson, C. E., Lind, C. J., and Polxer, W. L., 1973 : Chemical interactions of aluminum with aqueous silica at 25 degrees Celsius, Geol. Surv. Water-Supply Pap. pp.1827-E. 

  16. Yokoyama, T., Ueda, A., Kato, K., Mogi, K., and Matsuo, S., 2002 : A study of the alumina-silica gel adsorbent for the removal of silicic acid from geothermal water: Increase in adsorption capacity of the adsorbent due to formation of amorphous aluminosilicate by adsorption of silicic acid, J. Colloid Interface Sci., 252, pp.1-5. 

  17. Maraghechi, H., Rajabipour, F., Pantano, C. G., and Burgos, W. D., 2016 : Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity, Cem. Concr. Res., 87, pp.1-13. 

  18. Hill, J., Harris, A. W., Manning, M., Chambers, A., and Swanton, S. W., 2006 : The effect of sodium chloride on the dissolution of calcium silicate hydrate gels, Waste Manag., 26, pp.758-768. 

  19. Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C. J., and Zevenhoven, R., 2007 : Dissolution of natural serpentinite in mineral and organic acids, Int. J. Miner. Process., 83, pp.36-46. 

  20. Rodriguez, A., Costarricense, I., Area, D. E., Geotermicos, C. S. R., and Rica, C., 2006 : Amorphous Iron Silicate Scales in Surface Pipelines: Characterization and Geochemical Constraints on Formation Conditions in the Miravalles Geothermal Field, Costa Rica. 

  21. Xiong, X., Wang, Z., Wu, F., Li, X., and Guo, H., 2013 : Preparation of $TiO_2$ from ilmenite using sulfuric acid decomposition of the titania residue combined with separation of $Fe^{3+}$ with EDTA during hydrolysis, Adv. Powder Technol., 24, pp.60-67. 

  22. Arabia, S., 2009 : Extraction of Alumina from Local Clays by Hydrochloric Acid Process, JKAU Eng. Sci. 20, pp.29-41. 

  23. Gorrepati, E. A., Wongthahan, P., Raha, S., and Fogler, H. S., 2010 : Silica precipitation in acidic solutions: Mechanism, pH effect, and salt effect, Langmuir, 26, pp.10467-10474. 

  24. Xiao, J., Li, F., Zhong, Q., Bao, H., Huang, B. J., and Zhang, Y., 2015 : Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC, Hydrometallurgy, 155, pp.118-124. 

  25. Sheikholeslami, R., Al-Mutaz, I. S., Tan, S., and Tan, S. D., 2015 : Silica Fouling - effect of Ca, Mg, and Pretreatment by Sodium Aluminate, and Softeners, 6th World Congr. Chem. Eng., pp.23-27. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로