$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

텍스트 마이닝을 이용한 소비자 소비패턴 분석 기법 설계

An Analysis Scheme Design of Customer Spending Pattern using Text Mining

초록

본 논문에서는 텍스트 마이닝을 이용한 소비자의 소비패턴 분석 기법을 제안하였다. 제안하는 소비패턴 분석기법에서는 첫째, 피어슨의 상관계수를 이용하여 사용자의 평가점수에 대한 유사도를 분석하고, 둘째, 텍스트 마이닝 기법 중의 하나의 TD-IDF의 코사인 유사도를 이용하여 사용자의 리뷰들간의 유사도를 분석하고, 셋째, Sentiwordnet를 이용하여 평가점수와 리뷰의 일치성을 분석하였다. 그리고 제안하는 소비패턴 분석 기법은 평가점수의 유사도와 리뷰의 유사도를 이용하여 근접이웃들을 선정하고, 선정된 이웃에 소비패턴에 적합한 추천리스트를 제공하였다. 추천리스트의 정확도는 피어슨 상관계수가 0.79, TD-IDF가 0.73, 그리고 제안하는 소비패턴분석기법이 0.82로 나타났다. 즉, 제안하는 소비패턴분석기법은 소비자의 정량적인 평가점수와 정성적인 리뷰를 모두 이용하므로 소비 패턴을 좀 더 정확하게 분석할 수 있었다.

Abstract

In this paper, we propose an analysis scheme of customer spending pattern using text mining. In proposed consumption pattern analysis scheme, first we analyze user's rating similarity using Pearson correlation, second we analyze user's review similarity using TF-IDF cosine similarity, third we analyze the consistency of the rating and review using Sendiwordnet. And we select the nearest neighbors using rating similarity and review similarity, and provide the recommended list that is proper with consumption pattern. The precision of recommended list are 0.79 for the Pearson correlation, 0.73 for the TF-IDF, and 0.82 for the proposed consumption pattern. That is, the proposed consumption pattern analysis scheme can more accurately analyze consumption pattern because it uses both quantitative rating and qualitative reviews of consumers.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일