$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

텍스트 마이닝과 오피니언 마이닝 분석을 활용한 국내외 스포츠용품 브랜드 비교·분석 연구

Comparison and Analysis of Domestic and Foreign Sports Brands Using Text Mining and Opinion Mining Analysis

초록

본 연구는 국내외 스포츠용품 브랜드에 대한 빅데이터 분석을 실시하였다. 이를 위해 소셜 매트릭스 프로그램인 텍스톰과 패션데이터 분석 플랫폼인 MISP를 통해 텍스트 마이닝, TF-IDF, 오피니언 마이닝, 관심도 그래프를 실시하였으며, 스포츠브랜드에 대한 최근 인식을 살펴보기 위해 2017년 1월 1일부터 2017년 12월 31일까지 1년간을 연구대상 기간으로 한정하였다. 분석 결과, 첫째, 각 브랜드를 대표하는 상품을 확인할 수 있었다. 둘째, 각 브랜드를 대표하는 마케팅을 확인할 수 있었다. 셋째, 각 브랜드에서 공통적으로 추출된 단어를 확인할 수 있었다. 넷째, 각 브랜드의 긍정 및 부정에 대한 감정을 확인할 수 있었다.

Abstract

In this study, big data analysis was conducted for domestic and international sports goods brands. Text Mining, TF-IDF, Opinion Mining, interestity graph were conducted through the social matrix program Textom and the fashion data analysis platform MISP. In order to examine the recent recognition of sports brands, the period of study is limited to 1 year from January 1, 2017 to December 31, 2017. As a result of analysis, first, we could confirm the products representing each brand. Second, I could confirm the marketing that represents each brand. Third, the common words extracted from each brand were identified. Fourth, the emotions of positive and negative of each brand were confirmed.

저자의 다른 논문

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일