$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

옥수수 종실(kernel)과 속대(cob)의 불검화물(ZML) 중 phytosterol의 조성과 함량의 변이를 구명하여 고품질 옥수수 신품종 육성 및 생리활성물질의 유용 소재화를 위한 기초자료로 활용하고자 본 연구를 실시하여 얻어진결과를 요약하면 다음과 같다. 1. 옥수수 종실과 속대의 포화지방산은 phytosterol 함량과 부의 상관관계의 경향이었고, 불포화지방산 중 stearic 및 linoleic acid는 정상관 경향을 보였으나, linolenic acid는 종실에서 정상관($r=0.652^*$), 속대는 부상관($r=-0.505^*$) 관계를 보였다. 2. 옥수수 종실의 불검화물을 TLC로 분리한 결과 band I (campesterol, stigmasterol, ${\beta}$-sitosterol), band II (${\Delta}^5$-avenasterol), band III (${\Delta}^7$-stigmastenol), 및 band IV (${\Delta}^7$-avenasterol)로 뚜렷하게 분리되었고, 속대는 band I~IV 이외에도 3종 이상의 band가 추가적으로 분리되었다. 3. 옥수수 종실과 속대에 함유된 phytosterol의 GC 분리 패턴을 확인한 결과 campesterol, stigmasterol 및 ${\beta}$-sitosterol의 분리능이 좋았으나, ${\Delta}^7$-avenasterol (RT 22.846), ${\Delta}^7$-stigmastenol (RT 22.852) 및 ${\Delta}^5$-avenasterol (RT 22.862)은 혼합물질 상태로는 분리가 되질 않았다. 4. 옥수수 종실의 평균 phytosterol 함량은 635.9 mg/100g, 속대는 273.0 mg/100 g으로 종실이 속대에 비해 약 2.4배 정도 phytosterol 함량이 높았다. 옥수수 종실의 phytosterol 조성은 ${\beta}$-sitosterol 80.05% > campesterol 10.5% > stigmasterol 9.46% 순이었으나, 속대는 ${\beta}$-sitosterol 59.43% > stigmasterol 31.72% > campesterol 10.98%으로 종실과 속대의 phytosterol 조성비는 다소 상이하였다. 5. 본 연구 결과를 토대로 판단할 때 옥수수 종실에 함유된 ${\beta}$-sitosterol, campesterol 및 stigmasterol의 생합성 경로에서 전구물질이 되는 ${\Delta}^7$-avenasterol, ${\Delta}^7$-stigmastenol 및 ${\Delta}^5$-avenasterol이 옥수수 속대에서 검출되는 것으로 보아 옥수수 종실의 phytosterol은 속대에서 합성되어 종실로 전이되는 물질인 것으로 추정되었다.

Abstract AI-Helper 아이콘AI-Helper

Unsaponifiables in the kernel and the cob of 7 maize varieties were analyzed by using thin-layer chromatography (TLC) and gas chromatography (GC) for the identification of phytosterols and their concentrations. The unsaponifiables of the kernel were clearly separated into band I (campesterol, stigma...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 국내에서는 옥수수 불검화 추출물(ZML)을 수입하여 치주질환 예방 및 치료를 목적으로 하는 건강기능식품 및 의약품을 제조하고 있으나, 아직도 해당 분야의 연구 기반은 비교적 낮은 실정이다. 따라서 본 연구에서는 국내에서 육성, 재배중인 주요 옥수수 품종의 종실과 속대에 함유된 phytosterol의 조성과 함량변이를 검토하여 고품질 신품종 육성 및 부가가치 제고를 위한 신소재 개발에 활용하고자 하였다.
  • 옥수수 종실(kernel)과 속대(cob)의 불검화물(ZML) 중 phytosterol 의 조성과 함량의 변이를 구명하여 고품질 옥수수 신품종 육성 및 생리활성물질의 유용 소재화를 위한 기초자료로 활용하고자 본 연구를 실시하여 얻어진 결과를 요약하면 다음과 같다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
옥수수의 속대는 어떻게 이용되어 왔는가? 그러나 이삭에서 종실(kernel)을 탈립 후 부산물로 남겨지는 속대(cob)는 그 용도가 다양하지 않아 사료 및 땔감 등으로 쓰였는데, 태우고 남은 재에는 알칼리성분이 풍부하여 칼리비료의 제조에 사용되기도 하였다.
옥수수 속대에 함유되어 있는 Phytosterol이란? 우리나라에서는 민간요법으로 잇몸염증 완화에 옥수수 속대 끓인 물을 사용하여 왔으며, 최근 호주 등지에서는 속대 추출물이 첨가된 치약을 개발하였는데, 이는 속대에 함유된 phytosterol이 잇몸질환 예방과 치료에 효과가 있기 때문이라고 한다. Phytosterol은 각종 식물에 널리 함유되어 있는 steroid alcohol류의 물질로서 옥수수, 콩 등에 함량이 높은 것으로 알려져 있다(Rouf et al., 2016, Verleyen et al.
옥수수 속대를 이용해서 당을 얻거나 에탄올 생산에 사용하는 이유는? 옥수수 속대에는 cellulose가 약 39.1%, hemicellulose 42.1%, lignin 9.1%로 풍부하게 함유되어(Barl et al. 1991) 있어 속대를 가수분해 또는 효소처리를 하여 arabinose, xylose, xylitol, xylobiose와 같은 당을 얻거나 lactic acid, citric acid, 에탄올 생산에 이용하고 있다(Beall & Ingram 1992, Liaw et al. 2008, Olsson & Hahn-Hägerdal 1996).
질의응답 정보가 도움이 되었나요?

참고문헌 (31)

  1. Abidi S. L. 2001. Chromatographic analysis of plant sterols in foods and vegetable oils. J. Chromatogr. A. 935 : 173-201. 

  2. Abidi S. L., G. R. List, and K. A. Rennick. 1999. Effect of genetic modification on the distribution of minor constituents in canola oil. J. Am. Oil Chem. Soc. 76 : 463-467. 

  3. Ayerdi G. A., M. Berger, F. Labalette, S. Centis, J. Dayde, and A. Calmon 2015. Comparative analysis of fatty acids, tocopherols and phytosterols content in sunflower cultivars (Helianthus annuus) from a three-year multi-local study. ${\Phi}YTON$ 84 : 14-25. 

  4. Azadmard-Damirchi S. 2010. Review of the use of phytosterols as a detection tool for adulteration of olive oil with hazelnut oil. Food Addit Contam. 27 : 1-10. 

  5. Azadmard-Damirchi S., G. P. Savage, and P. C. Dutta. 2005. Sterol fractions in hazelnut and virgin olive oils and 4,4'-dimethylsterols as possible markers for detection of adulteration of virgin olive oil. J. Am. Oil Chem. Soc. 82 : 717-725. 

  6. Barl B., C. Biliaderis, E. Murray, and A. Macgregor. 1991. Combined chemical and enzymatic treatments of corn husks lignocellulosics. J. Sci. Food Agric. 56 : 195-214. 

  7. Beall, D. and L. Ingram. 1992. Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinant Escherichia coli B containing integrated genes for ethanol production. Biotechnol. Lett. 14 : 857-862. 

  8. de Vries J. H. M., A. Jansen, D. Kromhout, P. A. van de Bovenkamp, R.P. van Staveren, M.B. Mensink, and Katan. 1997. The fatty acid and sterol content of food composites of middle-aged men in seven countries. J. Food Comp. Anal. 10 : 115-141. 

  9. Force E. M., N. T. Dunford, and J. J. Salas. 2015. Sunflower: chemistry, production, processing, and utilization. AOACS Press, Urbana, IL. pp. 312-318. 

  10. Harrabi, S., A. St-Amand, F. Sakouhi, K. Sebei, H. Kallel, P. Mayer, and M. Boukhchina, 2008. Phytostanols and phytosterols distributions in corn kernel. Food Chemistry. 111 : 115-120. 

  11. Hartmann M. A., A. -M. Perret, J. -P. Carde, C. Cassagne, and P. Moreau. 2002. Inhibition of the sterol pathway in leek seedlings impairs phosphatidylserine and glucosylceramide synthesis but triggers an accumulation of triacyglycerols. BBA. 1583 : 285-296. 

  12. Jiang Y. Z. and T. Wang. 2005. Phytosterols in cereal byproducts. J. Am. Oil Chem. Soc. 82 : 439-444. 

  13. Kim S. L., Y. K. Son, J. J. Hwang, J. Song, H. G. Moon. 2000. Varietal difference of unsaponifiables in maize. Korean J. Breed. 32(1) : 33-37. 

  14. Kornfeldt A. and L. B. Croon. 1981. 4-Demethyl-, 4-monomethyl-, and 4,4'-dimethylsterols in some vegetable oils. Lipids. 16 : 306-314. 

  15. Liaw W., C. Chen, W. Chang, and K. Chen. 2008. Xylitol production fromrice strawhemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized candida subtropicalis WF79. J. Biosci. Bioeng. 105(2) : 97-105. 

  16. Lagarda M. J., G. Garcia-Llatas, and R. Farre. 2006. Analysis of phytosterols in foods. J. Pharm. Biomed. Anal. 41 : 1486-1496. 

  17. Margaret S. and L. Yu. 2012. A single extraction and HPLC procedure for simultaneous analysis of phytosterols, tocopherols and lutein in soybeans, Food Chemistry. 135 : 2789-2795. 

  18. Nes W. 1987. Multiple roles for phytosterols. In: P. Stumpf, Editor, The Metabolism. Structure and Function of Plant Lipids, Plenum Press, New York : pp. 3-9. 

  19. Olsson L. and B. Hahn-Hagerdal. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Tech. 18(5) : 312-331. 

  20. Ostlund R. E., S. B. Racette, A. Okeke, and W. F. Stenson. 2002. Phytosterols that are naturally present in commercial corn oil significantly reduce cholesterol absorption in humans. Am. J. Clin. Nutr. 75 : 1000-1004. 

  21. Ostlund R. E., S. B. Racette, and W. F. Stenson. 2003. Inhibition of cholesterol absorption by phytosterol-replete wheat germ compared with phytosterol-depleted wheat germ. Am. J. Clin. Nutr. 77(6) : 1385-1589. 

  22. Phillips, K. M., Ruggio, D. M., and M. Ashraf-Khorassani. 2005. Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 53 : 9436-9445. 

  23. Piironen V., D. G. Lindsay, T. A. Miettinen, J. Toivo, and A. Lampi. 2000. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 80 : 839-966. 

  24. Rebecca E., B. Scholz, and K. H. Engel. 2013. Analysis of free phytosterols/stanols and their intact fatty acid and phenolic acid esters in various corn cultivars. J. Cereal Sci. 58 : 333-340. 

  25. Rivera del Alamo R.M., G. Fregapane, F. Aranda, S. Gomez-Alonso, M.D. Salvador. 2004. Sterol and alcohol composition of Cornicabra virgin olive oil: the campesterol content exceeds the upper limit of 4% established by EU regulations. Food Chemistry. 84 : 533-537. 

  26. Robert A. M., A.-M. Lampi, and K. B. Hicks. 2009. Fatty Acid, Phytosterol, and polyamine conjugate profiles of edible oils extracted from corn germ, corn fiber, and corn kernels. J. Am. Oil Chem. Soc. 86 : 1209-1214. 

  27. Rouf S., T. P. Kamlesh, and K. Pradyuman. 2016. Maize-A potential source of human nutrition and health: A review. Cogent Food & Agriculture. 2 : 1166995-116703. 

  28. St-Onge M. -P., B. Lamarche, J. -F. Mauger, J. H. Peter, Marie-Pierre. 2003. Consumption of a functional oil rich in phytosterols and medium-chain triglyceride oil improves plasma lipid profiles in Men. J. of Nutrition. 133(6) : 1815-1820. 

  29. Transparency Market Research. 2012. Phytosterols market ( ${\beta}$ -Sitosterol, campesterol, stigmasterol, ergosterol) - global industry analysis, market size, share, growth and forecast, 2010-2018. https://www.transparencymarketresearch.com. 

  30. Verleyen T., M. Forcades, R. Verhe, K. Dewettinck, A. Huyghebaert, and W. De Greyt. 2002. Analysis of free and esterified sterols in vegetable oils. J. Am. Oil Chem. Soc. 79 : 117-122. 

  31. Zhou B. F., J. Stamler, B. Dennis, A. Moag-Stahlberg, N. Okuda, C. Robertson, L. Zhao, Q. Chan, and P. Elliott; INTERMAP Research Group. 2003. Nutrient intakes of middle-aged men and women in China, Japan, United Kingdom, and United States in the late 1990s: The INTERMAP Study. J. Hum Hypertens. 17 : 623-630. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로