$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석
State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage 원문보기

Journal of nuclear fuel cycle and waste technology = 방사성폐기물학회지, v.16 no.2, 2018년, pp.243 - 260  

김진섭 (한국원자력연구원) ,  국동학 (한국원자력연구원) ,  최종원 (한국원자력연구원) ,  김건영 (한국원자력연구원)

초록
AI-Helper 아이콘AI-Helper

사용후핵연료 건식저장 시스템과 관련하여 고온 및 방사선으로 인한 콘크리트 손상과 열화특성에 대해 포괄적으로 문헌분석을 수행하였다. 고온에 의한 장기열화를 방지하기 위한 콘크리트의 임계온도는 일반적으로 $95^{\circ}C$이며, 온도경사는 콘크리트 균열방지를 위해 $60^{\circ}C$ 이하가 되도록 설정하고 있다. 열화정도는 노출온도와 노출시간에 비례하여 증가하는 경향을 나타내며, 압축강도에 비해 인장강도가 고온에 보다 민감한 특성을 보인다. 한편 방사선의 에너지가 $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$ 이하일 경우에는 핵반응으로 인한 가열을 무시할 수 있다. 하지만 콘크리트가 $10^{19}n{\cdot}cm^{-2}$ 이상의 중성자에 혹은 $10^{10}$ rad를 초과하는 감마선량에 노출된다면 콘크리트의 역학적 물성이 점차 감소하는 경향을 보이며, 그 손상정도는 콘크리트 구성재료의 특성에 의존적이다. 콘크리트에 대한 방사선 조사시 재료의 역학적 물성변화는 주로 온도상승으로 인한 콘크리트 내부 함수량의 변화 및 재료간의 열적물성 차이로 인한 체적증가와 균열발생으로 발생한다. 따라서 건식저장과 관련된 기술의 조속한 확보 및 인 허가를 위해서는 그 간의 선행연구 결과를 최대한 활용할 필요가 있으며, 본 연구결과는 향후 사용후핵연료 건식저장 콘크리트 캐스크 관련 국내 자체기술 개발에 중요한 기초자료로 활용될 수 있을 것이다.

Abstract AI-Helper 아이콘AI-Helper

A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
캐스크란? 사용후핵연료의 건식저장 구조물은 재료적인 측면에서 분류하면 크게 금속 구조물과 콘크리트 구조물로 구분할 수있다. 사용후핵연료 등 고방사성물질의 수송·저장에 쓰이는 차폐기능을 가진 구조물을 캐스크라 하며, 건식저장은 저장방식에 따라 금속 캐스크, 콘크리트 사일로, 저장모듈 그리고 볼트방식으로 나뉠 수 있다. 캐스크 시스템은 운영상의 유연성 때문에 최근 미국과 일본에서 많은 원전 운영자들이 선호하고 있는 저장기술로 알려져 있다[1].
사용후핵연료의 건식저장 구조물을 재료적인 측면에서 구분하면? 사용후핵연료의 건식저장 구조물은 재료적인 측면에서 분류하면 크게 금속 구조물과 콘크리트 구조물로 구분할 수있다. 사용후핵연료 등 고방사성물질의 수송·저장에 쓰이는 차폐기능을 가진 구조물을 캐스크라 하며, 건식저장은 저장방식에 따라 금속 캐스크, 콘크리트 사일로, 저장모듈 그리고 볼트방식으로 나뉠 수 있다.
건식저장시설에서 콘크리트의 사용은 두 가지 주요 목적은? 건식저장시설에서 콘크리트의 사용은 두 가지 주요 목적으로 이용된다. 하나는 구조적인 강도를 제공하기 위함이고 다른 하나는 방사선 차폐의 목적으로 사용된다. 콘크리트 구조물은 다른 구조재료에 비해 가격이 저렴한 반면 내구성 측면에서 우수한 것으로 평가되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (57)

  1. J.W. Choi, J.N. Chang, W.S. Ryu, G.W. Song, J.G. Bang, et al., "Development of Integrity Evaluation Technology for the Long-term Spent Fuel Dry Storage System", Korea Atomic Energy Research Institute Report, KAERI/RR-3157/2009 (2009). 

  2. J.S. Kim, J.W. Choi, K.S. Lee, and S. Kwon, "The state of the Technology: Radiation Damage and Deterioration of Concrete Cask in Spent Fuel Dry Storage System", Korea Atomic Energy Research Institute Report, KAERI/AR/851/2010 (2010). 

  3. J.S. Kim, K.S. Lee, J.W. Choi, and S. Kwon, "A Literature Review: The effect of Thermal Damage on Ther Physical and Mechanical Properties of Concrete Materials", Korea Atomic Energy Research Institute Report, KAERI/AR-876/2011 (2011). 

  4. H. Issard, F. Nizeyimana, E. Cavaletti, and J. Garcia, "Managing Degradation of Materials in Used Nuclear Fuel Dry Storage", IAEA TM 45455, Used Fuel Storage Options, July, 2-4, Vienna (2013). 

  5. A.H. Chowdhury, L. Caseres, Y.M. Pan, G. Oberson, and C. Jones, Expert panel workshop on concrete degradation in spent nuclear fuel dry cask storage systems-Summary report, US. NRC (2016). 

  6. J.S. Kim, S.W. Cha, and J.W. Choi, "The State of Primary Degradation Models of Concrete Structure and Development of the Optimized Degradation Model", Korea Atomic Energy Research Institute Report, KAERI/TR-4303/2011 (2011). 

  7. F.P. Glasser, J. Marchand, and E. Samson, "Durability of Concrete-Degradation Phenomena involving Detrimental Chemical Reactions", Cement and Concrete Research, 38, 226-246 (2008). 

  8. M.F. Kaplan, "Concrete Radiation Shielding_Nuclear Physics, Concrete Properties, Design and Construction", John Wiley & Sons, INC., New York (1989). 

  9. H.E. Hungerford, "Shielding in fast reactor technology: plant design", Yevick, J.G., (ed.), MIT Press, Ch.8 (1966). 

  10. R.G. Jaeger,(ed.), "Engineering compendium on radiation shielding, Vol. II: shielding materials", S.9.1.12.5. Springer-Verlag, Berlin, Heidelberg, New York (1975). 

  11. E.G. Peterson, "Shielding Properties of Ordinary Concrete as a Function Temperature", USAEC Report HW-65572 (1960). 

  12. B.T. Price, C.C. Horton, and K.T. Spinney, "Radiation Shielding", Pergamon Press, London (1957). 

  13. H. Goldstein, Fundamental aspects of reactor shielding. Addison-Wesley, Cambridge, USA (1959). 

  14. K. Billig, "Prestressed concrete pressure vessels", J. Amer. Concr. Inst., 59(11), 1601-1634 (1962). 

  15. J.S. Davis, "High-density concrete for shielding atomic energy plants", J. Amer. Concr. Inst., 29(11) (1958). 

  16. T. Rockwell (ed.), "Reactor Shielding Design Manual", McGraw-Hill, New York (1956). 

  17. U. Schneider, "Behaviour of Concrete at High Temperature", Deutscher Ausschuss Fur Stahlbeton, Heft 337, Berlin (1982). 

  18. Y. Anderberg and S. Thelanderson, "Stress and Deformation Characteristics of Concrete at High Temperatures, 2-Experimental Investigation and Material Behaviour Model", Bulletin 54, Lund Institute of Technology, Lund, Sweden (1976). 

  19. T. Blundell, C. Dimond, and R.G. Browne, "The Properties of Concrete subjected to Elevated Temperatures", CIRIA Underwater Engineering Group, Technical Note No. 9, London (1976). 

  20. E. Crispino, "Studies on the Technology of Concretes under Thermal Conditions", CIRIA Underwater Engineering Group. Paper SP34-25, Vol. I, 443-479 (1972). 

  21. R. Blundell, "Session VII discussions on Structure, Solid Mechanics and Engineering Design", Proc. Conf. on Civil Engineering Materials, Southampton (1969). 

  22. T. Harada, J. Takeda, S. Yamane, and F. Furumura, "Strength, elasticity and thermal properties of concrete subjected to elevated temperatures", CIRIA Underwater Engineering Group. Paper SP34-21, Vol. I, 377-406 (1972). 

  23. U. Diederishs and U. Schneider, "Bond strength at high temperatures", Magazine of Concrete Research. 33(115), 75-84 (1981). 

  24. K. Hertz, "The anchorage capacity of reinforcing bars at normal and high temperatures", Magazine of Concrete Research, 34(121), 213-220 (1972). 

  25. T. Harada, "Variations of Thermal Conductivity of Cement Mortars and Concrete under High Temperatures", Trans. Architectural Institute of Japan, No.49, Tokyo (1954). 

  26. J.C. Marechal, "Thermal Conductivity and Thermal Expansion Coefficients of Concrete as a Function of Temperature and Humidity", CIRIA Underwater Engineering Group. Paper SP34-49, Vol. II, 1047-1057 (1972). 

  27. H.S. Davis, "Effects of High-Temperature Exposure on Concrete", Materials Research and Standards, 7(10), 452-459 (1967). 

  28. H. Weigler and R. Fishcer, "Influence of High Temperatures on Strength and Deformations of Concrete", Amer. Concr. Inst. Special Publication SP-34: Concrete for Nuclear Reactors. Paper SP34-26, Vol. I, 481-493 (1972). 

  29. R. Idine, J. Lee, and B. Bresler, "Behaviour of Reinforced Concrete under Variable Elevated Temperatures", University of California Fire Research Group Report No. UCB.FRG 75-8 (1975). 

  30. S. Ohgishi, S. Miyasaka, and J. Chida, "On Properties of Magnetite and Serpentine Concrete at Elevated Temperatures for Nuclear Reactor Shielding", Amer. Concr. Inst. Special Publication SP34: Concrete for Nuclear Reactors. Paper SP34-57, Vol. III, 1243-1253 (1972). 

  31. B. Wu, J. Yuan, and G.Y. Wang, "Experimental Study on the Mechanical Properties of HSC After High Temperature", Chinese J. Civil Engineering, 33(2), 8-15 (2000). 

  32. B.T. Kelly, J.E. Brocklehurst, D. Mottershead, S. McNearney, and I. Davidson, "Effects of reactor radiation on concrete", 2nd Conference on Prestressed Concrete Reactor Pressure Vessels and their Insulation. Commission of the European Communities, Brussels (1968). 

  33. L.F. Elleuch, F. Dubois, and J. Rappeneau, "Effects of neutron radiation on special concretes and their components", American Concrete Institute Special Publication SP-34:Concrete for Nuclear Reactors. Paper SP 34-51, 1071-108 (1972). 

  34. J. Seeberger and H.K. Hilsdorf, "Effect of nuclear radiation on mechanical properties of concrete", Transactions 5th International Conference on Structural Mechanics in Reactor Technology (SMIRT-5), Paper H2/3, North-Holland (1979). 

  35. V.B Dubrovskii, Sh.Sh. Ibragimov, M.Ya. Kulakovskii, A.Ya. Ladygin, and B.K. Pergamenshchik, "Radiation damage in ordin da concrete", Atomnina Energina, 23(4), 310-16, English translation in Soviet Atomic Energy, 23(4), 1053-8 (1967). 

  36. H.K. Hilsdorf, J. Kropp, and H.J. Koch, "The effects of nuclear radiation on the mechanical properties of concrete", American Concrete Institute Special Publication SP-55, Paper SP55-10, 223-51 (1978). 

  37. S.C. Alexander, "Effects of Irradiation on Concrete: Final Results", Atomic Energy Research Establishment, Harwell, United Kingdom Atomic Energy Authority (1963). 

  38. G. Edgemon and R. Anantatmula, "Hanford Waste Tank System Degradation Mechanisms", WHC-SD-WM-ER-414, Rev. 0a, Hanford, June 26 (1995). 

  39. D.L. Fillmore, "Literature Review of the Effects of Radiation and Temperature on the Aging of Concrete", Idaho National Engineering and Environmental Laboratory, INEEL/EXT-04-02319, 1-10 (2004). 

  40. J.A. Houben, "De bestraling van Mortelproefstukken (The irradiation of mortar test specimens", 2nd Conference on Prestressed Concrete Reactor Vessels and their Thermal Insulation, Commission of the European Communities, Brussels (November) (1969). 

  41. C.F. Van der Schaaf, "Effect of irradiation and heating on the strength of mortar and concrete)", 2nd Conference on Prestressed Concrete Reactor Vessels and their Thermal Insulation, Commission of the European Communities, Brussels (November) (1969). 

  42. S. Granata and A. Montagnini, "Studies of behaviour of concrete under irradiation", Amer. Concr. Inst. Special Publication SP-34: Concrete for nuclear reactors, Paper SP34-53, Vol. II, 1163-72 (1972). 

  43. B.S. Gray, "The effect of reactor radiation on cements and concrete", Conference on Prestressed Concrete Reactor Pressure Vessels, Commission of the European Communities, Luxembour, 17-39 (1972). 

  44. US. Nuclear Regulatory Commission, 10CFR 72.104-Criteria for radioactive materials in effluents and direct radiation from ISFSI or MRS (1998). 

  45. US. Nuclear Regulatory Commission, 10CFR 72.106-Controlled area of an ISFSI or MRS (2017). 

  46. Organization of Economic Co-operation and Development, "Radiological Impact of Spent Nuclear Fuel Management Options-A Comparative Study", Nuclear Energy Agency for the OECD (2000). 

  47. G. Edgemon and R. Anantatmula, "Hanford Waste Tank System Degradation Mechanisms", WHC-SD-WM-ER-414, Rev. 0a, Hanford, June 26 (1995). 

  48. Jager, R. G.(ed.), Engineering Compendium on Radiation Shielding, Vol. II. Springer-Verlag, New York, 117 (1975). 

  49. US Nuclear Regulatory Commission, The Effect of Elevated Temperature on Concrete Materials and Structures - A Literature Review, NUREG/CR-6900, ORNL/TM-2005/553, Oak Ridge National Laboratory (2006). 

  50. American Society of Mechanical Engineers. "Boiler and Pressure Vessel Code-Section III: Rules for construction of nuclear power plant components", American Society of Mechanical Engineers, New York (2007). 

  51. Electric Power Research Institute, Used fuel and high-level radioactive waste extended storage collaboration program: November 2009 workshop proceedings, TR-1020780, Palo Alto, California: EPRI (2010). 

  52. ASTM International, "Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems", ASTM C1562-10, West Conshohocken, Pennsylvania: ASTM International (2010). 

  53. Southwest Research Institute, Initial Long-term Integrity Assessment of Spent Fuel Dry Storage-Final Report, Center for Nuclear Waste Regulatory Analyses, Geosciences and Engineering Division, SRI, CNWRA 2011-001, Texas, USA (2011). 

  54. H.E. Hungerford, "Shielding,' Ch. 8 in Fast Reactor Technology: Plant Design", Yevick, J.G. (ed.), MIT Press, Cambridge, Massachusetts, 432 (1966). 

  55. American National Standard Institute, Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants, ANSI/ANS-6.4-2006 (2006). 

  56. British Standards Institution, "Specification for Prestressed concrete Pressure Vessels for Nuclear Reactors", BS 4975, London (1990). 

  57. L.F. Elleuch, F. Dubois, and J. Rappeneau, "Effects of neutron radiation on special concretes and their components", American Concrete Institute Special Publication SP-34:Concrete for Nuclear Reactors, Paper SP 34-51, 1071-108 (1972). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로