$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

국내·외 연구사례를 통해 본 하수처리시설 미세플라스틱 배출특성 및 관리방안 고찰
A mini-review on discharge characteristics and management of microplastics in sewage treatment plants 원문보기

上下水道學會誌 = Journal of Korean Society of Water and Wastewater, v.32 no.4, 2018년, pp.337 - 348  

정동환 (국립환경과학원 상하수도연구과) ,  주병규 (국립환경과학원 상하수도연구과) ,  이원석 (국립환경과학원 상하수도연구과) ,  정현미 (국립환경과학원 상하수도연구과) ,  박준원 (국립환경과학원 상하수도연구과) ,  김창수 (국립환경과학원 상하수도연구과)

Abstract AI-Helper 아이콘AI-Helper

As the issue of microplastics (MPs) detection in tap water was raised in other countries in 2017, monitoring of MPs in drinking and source water, and sewage treatment plant (STP) effluents was initiated. This study intends to look into other studies on MPs in STPs at home and abroad, and review the ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이러한 시점에서 환경부는 하천, 하수, 먹는물 등에서 미세플라스틱에 대한 실 태조사를 추진 중에 있다. 우선 본 논문에서는 국내․ 외 하수처리시설 미세플라스틱에 대한 연구사례를 중심으로 하수처리시설 미세플라스틱의 검출 현황을 통해 배출특성을 살펴보고 관리방안을 고찰해 보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
미세플라스틱을 구성하는 재질에는 어떤 것들이 있는가? , 2013). 미세플라스틱을 구성하는 재질은 polyethylene(PE), polypropylene(PP), polystyrene(PS), polyethylene terephthalate(PET), polyvinylchloride(PVC), polyvinylalcohol(PVA) 등 다양하다. 이들 물질 중 PE와 PP가 PET와 PVC보다 다환방향족탄화수소(PAHs) 및 폴리염화비페닐(PCBs)을 더 많이 흡수하는 것으로 나 타나 PE 및 PP를 포함한 제품이 생태계에 악영향을 미칠 수 있다 (Rochman et al.
미세플라스틱을 구성하는 재질 중 PE와 PP의 문제점은 무엇인가? 미세플라스틱을 구성하는 재질은 polyethylene(PE), polypropylene(PP), polystyrene(PS), polyethylene terephthalate(PET), polyvinylchloride(PVC), polyvinylalcohol(PVA) 등 다양하다. 이들 물질 중 PE와 PP가 PET와 PVC보다 다환방향족탄화수소(PAHs) 및 폴리염화비페닐(PCBs)을 더 많이 흡수하는 것으로 나 타나 PE 및 PP를 포함한 제품이 생태계에 악영향을 미칠 수 있다 (Rochman et al., 2013; Ogata et al.
미세플라스틱이란 무엇인가? * Corresponding author: Hyenmi Chung(E-mail: hyenmic@korea.kr) 미세플라스틱은 통상 5 mm 미만 크기의 플라스틱을 말하며, 처음부터 이러한 크기로 제조한 1차 미세플라 스틱은 세안제, 샴푸, 치약, 화장품 등에 사용되며, 2차 미세플라스틱은 플라스틱 가방, 음식 포장지, 컵, 병, 풍선 등과 같은 소비자 제품과 산업 관련 부품, 어업 또는 양식과 관련된 제품이 물리․화학적으로 파쇄되거 나 분해 작용에 의해 만들어진다 (Lee and Kim, 2017; Gold et al., 2013).
질의응답 정보가 도움이 되었나요?

참고문헌 (45)

  1. Carr, S.A., Liu, J., Tesoro, A.G. (2016). Transport and fate of microplastic particles in wastewater treatment plants, Water Res., 91, 174-182. 

  2. Cole M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger, J., Galloway, T.S. (2013). Microplastic ingestion by zooplankton, Environ. Sci. Technol., 47, 6646-6655. 

  3. Department for Environment, Food and Rural Affairs in Scottish Government. (2016). Proposals to ban the use of plastic microbeads in cosmetics and personal care products in the UK and call for evidence on other sources of microplastics entering the marine environment, https://consult.defra.gov.uk/marine/microbead-ban-proposals/supporting_documents/Microbead%20ban_Consultation%20Document.pdf. 

  4. Environmental Audit Committee. (2016). Environmental impact of microplastics, House of Commons, London, UK, pp. 9-12. 

  5. Estahbanati, S. and Fahrenfeld, N.L. (2016). Influence of wastewater treatment plant discharges on microplastic concentrations in surface water, Chemosphere, 162, 277-284. 

  6. Geyer, R., Jambeck, J.R., Law K.L. (2017). Production, use, and fate of all plastics ever made, Sci. Adv., 3:e1700782, 1-5. 

  7. Gold, M., Mika, K., Horowitz, C., Herzog, M., Lei, L. (2013). Stemming the tide of plastic marine litter: A global action agenda, Pritzker Environmental Law and Policy Briefs No.5, Emmett center on climate change and the environment in UCLA, https://www.law.ucla.edu/-/media/Files/UCLA/Law/Pages/Publications/CEN_EMM_PUB%20Pritzker_5_Stemming_Tide.ashx. 

  8. Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P., Duflos, G. (2017). Occurrence and effects of plastic additives on marine environments and organisms: A review, Chemosphere, 182, 781-793. 

  9. Jeong, C.B., Kang, H.M., Lee, M.C., Kim, D.H., Han, J., Hwang, D.S., Souissi, S., Lee, S.J., Shin, K.H., Park, H.G., Lee, J.S. (2017). Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana, Sci. Rep., 7:41323, 1-11. 

  10. Jeong, C.B., Won, E.J., Kang, H.M., Lee, M.C., Hwang, D.S., Hwang, U.K., Zhou, B., Souissi, S., Lee, S.J., Lee, J.S. (2016). Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the Monogonont Rotifer (Brachionus koreanus), Environ. Sci. Technol., 50, 8849-8857. 

  11. Julliana, A., Ivar do Sul, Costa, M.F. (2014). The present and future of microplastic pollution in the marine environment, Environ. Pollut., 185, 352-364. 

  12. Lee, H.S. and Kim, Y.J. (2017). Estimation of microplastics emission potential in South Korea(For primary source), J. Korean Soc. Oceanogr., 22(3), 135-149. 

  13. Li, J., Liu, H., Chen, J.P. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection, Water Res., 137, 362-374. 

  14. Lohmann, R. (2017). Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans - but should microplastics be considered pops themselves?, Integr. Environ. Assess. Manage., 13(3), 460-465. 

  15. Machado, A.A.S., Kloas, W., Zarfl, C., Hempel, S., Rillig, M.C. (2018). Microplastics as an emerging threat to terrestrial ecosystems, Global Change Bio., 24, 1405-1416. 

  16. Mason, S.A., Garneau, D., Sutton, R., Chu Y., Ehmann, K., Barnes, J., Fink, P., Papazissimos, D., Rogers, D.L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent, Environ. Pollut., 218, 1045-1054. 

  17. Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment, Environ. Sci. Technol., 35, 318-324. 

  18. McCormick, A.R., Hoellein, T.J., London, M.G., Hittie, J., Scott, J.W., Kelly, J.J. (2016). Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages, Ecosphere, 7(11), 1-22. 

  19. McCormick, A.R., Hoellein, T.J., Mason, S.A., Schluep, J., Kelly, J.J. (2014). Microplastic is an abundant and distinct microbial habitat in an urban river, Environ. Sci. Technol., 48(20), 11863-11871. 

  20. Ministry of Environment. (2017). Media presentation for investigation results of microplastic detection in tap water in Korea, http://www.me.go.kr/home/file/readDownloadFile.do;jsessionidtwZ7kimOUiz1Ochz1zER2EEQMQYbV7QuA7fraaTJqDPUSy1fMwHAm1aavMYa192B.meweb2vhost_servlet_engine1?fileId151005&fileSeq1 (November 20, 2017). 

  21. Ministry of Food and Drug Safety. (2016). It will be not put microplastics into cosmetics from July next year, http://www.mfds.go.kr/index.do?mid675&pageNo16&seq33645&sitecode1&cmdv. 

  22. Mintentig, S.M., Int-Vee, I., Loder, M.G.J., Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Res., 108, 365-372. 

  23. Murphy, F., Ewins, C., Carbonnier, F., Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment, Environ. Sci. Technol., 50, 5800-5808. 

  24. National Institute for Public Health and the Environment. (2016). Emission of microplastics and potential mitigation measures - Abrasive cleaning agents, paints and tyre wear, RIVM Report 2016-0026, PP. 16-20. 

  25. National Institute of Environmental Research. (2016). Studies on the investigation method of microplastic in the freshwater, pp. 21-26. 

  26. New York State Office of the Attorney General. (2015). Discharging microbeads to our waters: An examination of wastewater treatment plants in New York, http://www.ag.ny.gov/pdfs/2015_Microbeads_Report_FINAL.pdf. 

  27. Ogata, Y., Takada, H., Mizukawa, K., Hirai, H., Iwasa, S., Endo, S., Mato, Y., Saha, M., Okuda, K., Nakashima, A., Murakami, M., Zurcher, N., Booyatumanondo, R., Zakaria, M.P., Dung, L.Q., Gordon, M., Miguez, C., Suzuki, S., Moore, C., Karapanagioti, H.K., Weerts, S., McClurg, T., Burresm, E., Smith, W., Velkenburg, M., Lang, J.S., Lang, R.C., Laursen, D., Danner, B., Stewardson, N., Thompson, R.C. (2009). International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs, Mar. Pollut. Bull., 58(10), 1437-1446. 

  28. Pachkowski, B. (2016). Microplastics as contaminants of emerging concern, http://www.nj.gov/dep/wms/Pachkowski%20-%20NJWMC%20meeting%20(21Jan16)%20-%20microplastics.pdf(presentation). 

  29. Quinn, B., Murphy, F., Ewins, C. (2017). Validation of density separation for the rapid recovery of microplastics from sediment, Anal. Methods, 9, 1491-1498. 

  30. Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Takada, H., Teh, S., Thompson, R.C. (2013). Policy: Classify plastic waste as hazardous, Nature, 494, 169-171. 

  31. San Francisco Estuary Institute. (2017). Microplastic monitoring and science strategy for San Francisco bay, Regional monitoring program(RMP) for water quality in San Francisco bay, pp. 21-27. 

  32. Shim, W.J., Song, Y.K., Hong, S.H., Jang, M. (2016). Identification and quantification of microplastics using Nile Red staining, Mar. Pollut. Bull., 113, 469-476. 

  33. Shim, W.J., Hong, S.H., Eo, S.E. (2017). Identification methods in microplastic analysis: A review, Anal. Methods, 9, 1384-1391. 

  34. Swedish Environmental Research Institute. (2014). Screening of microplastic particles in and down-stream a wastewater treatment plant, Report C55, https://www.diva-portal.org/smash/get/diva2:773505/FULLTEXT01.pdf. 

  35. Swedish Environmental Research Institute. (2016a). Swedish sources and pathways for microplastics to the marine environment: A review of existing data, Report C183, https://www.ivl.se/webdav/files/Rapporter/C183.pdf. 

  36. Swedish Environmental Research Institute. (2016b). Microlitter in sewage treatment systems: A Nordic perspective on waste water treatment plants as pathways for microscopic anthropogenic particles to marine systems, Report C194, https://www.diva-portal.org/smash/get/diva2:923936/FULLTEXT01.pdf. 

  37. Talvitie, J., Mikola, A., Setala, O., Heinonen, M., Koistinen, A. (2017a). How well is microlitter purified from wastewater? : A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant, Water Res., 109, 164-172. 

  38. Talvitie, J., Mikola, A., Koistinen, A., Setala, O. (2017b). Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Res., 123, 401-407. 

  39. The Guardian. (2017). Plastic fibres found in tap water around the world, study reveals, https://www.theguardian.com/environment/2017/sep/06/plastic-fibres-found-tap-water-around-world-study-reveals (September 6, 2017). 

  40. US CFR. (2015). Section 301 of the Federal Food, Drug, and Cosmetic Act(21 U.S.C 331): Microbead-Free Waters Act of 2015, https://www.gpo.gov/fdsys/pkg/BILLS-114hr1321enr/pdf/BILLS-114hr1321enr.pdf. 

  41. Venghaus, D. and Barjenbruch, M. (2017). Microplastics in urban water management, Environmental Engineering, Technical Transactions 1/2017, DOI: 104467/2353737XCT.17.011.6108, 137-146. 

  42. Wagner, M., Scherer, C., Alvarez-Munoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries, E., Grosbois, C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A.D., Winther-Nielsen, M., Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know, Environ. Sci. Europe, 26(12), 1-9. (http://www.enveurope.com/content/26/1/12) 

  43. Water Environment and Reuse Foundation. (2017). White Paper - Microplastics in Aquatic Systems: An Assessment of Risk, pp. 15-16. 

  44. Ziajahromi, S., Neale, P.A., Rintoul, L., Leusch, F.D.L. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics, Water Res., 112, 93-99. 

  45. Ziccardi, L.M., Edgington, A., Hentz, K., Kulacki, K.J., Driscoll, S.K. (2016). Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review, Environ. Toxicol. Chem., 35(7), 1667-1676. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로