$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

연구 논문의 의미 구조 기반 메타데이터 항목의 자동 식별 처리를 위한 문장 구조 분석

Analyzing the Sentence Structure for Automatic Identification of Metadata Elements based on the Logical Semantic Structure of Research Articles

초록

본 연구는 연구논문의 논리적 의미 구조 메타데이터 항목에 해당하는 데이터에 담겨 있는 문장의 구성에 따라 시스템에서 적절한 항목으로 자동 식별 처리될 수 있도록 하는, 문장의미론(Sentence Semantics)적 분석 방법을 제안하고자 하는 목적으로 수행되었으며, 의미 구조 메타데이터 항목 중 'Research Objectives'와 'Research Outcomes'에 해당하는 연구 논문 문장의 구조를 어절 수, 접속어 종류, 다수 출현한 단어들의 문장 내 역할, 문장에서 다수 출현한 어미 형태 등을 기준으로 분석해 정리하였다. 연구 결과, 문장들의 어절 수는 'Research Objectives'는 평균 38개, 'Research Outcomes'는 평균 212개로 나타났으며, 접속어의 경우 'Research Objectives'는 인과-순접-대등-환언/요약 관계를 나타내는 접속어 순으로, 'Research Outcomes'는 인과-대등-순접-환언/요약 관계를 나타내는 접속어 순으로 많이 출현한 것으로 파악되었다. 출현빈도가 높은 분석 대상 단어들은 각각 문장 내에서 주어, 목적어, 서술어 역할 등으로 사용되고 있었으며, '역할'이나 '요인', '관계'는 목적이나 결과 부분 모두에서 비슷한 역할을 담당하고 있었지만 '연구'는 같은 단어라도 연구의 목적 부분과 결과 부분에서 사용되는 역할에 차이를 보였다. 마지막으로 문장 내 동사의 어미는 'Research Objectives'에서 '~고자'와 '~였다', 'Research Outcomes'에서 '~었다', '~있다', '~였다'가 많이 출현하였다. 본 연구는 연구자의 학술적 이해형성을 지원하기 위해 연구논문이 담고 있는 공통된 논리적 의미를 반영한 메타데이터 요소의 자동 식별과 입력 방안을 제시하는 데 활용할 수 있는 기초 연구로서 의의가 있다.

Abstract

This study proposes the analysis method in sentence semantics that can be automatically identified and processed as appropriate items in the system according to the composition of the sentences contained in the data corresponding to the logical semantic structure metadata of the research papers. In order to achieve the purpose, the structure of sentences corresponding to 'Research Objectives' and 'Research Outcomes' among the semantic structure metadata was analyzed based on the number of words, the link word types, the role of many-appeared words in sentences, and the end types of a word. As a result of this study, the number of words in the sentences was 38 in 'Research Objectives' and 212 in 'Research Outcomes'. The link word types in 'Research Objectives' were occurred in the order such as Causality, Sequence, Equivalence, In-other-word/Summary relation, and the link word types in 'Research Outcomes' were appeared in the order such as Causality, Equivalence, Sequence, In-other-word/Summary relation. Analysis target words like '역할(Role)', '요인(Factor)' and '관계(Relation)' played a similar role in both purpose and result part, but the role of '연구(Study)' was little different. Finally, the verb endings in sentences were appeared many times such as '~고자', '~였다' in 'Research Objectives', and '~었다', '~있다', '~였다' in 'Research Outcomes'. This study is significant as a fundamental research that can be utilized to automatically identify and input the metadata element reflecting the common logical semantics of research papers in order to support researchers' scholarly sensemaking.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

DOI 인용 스타일