$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어
Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents 원문보기

한국산업보건학회지 = Journal of Korean Society of Occupational and Environmental Hygiene, v.28 no.3, 2018년, pp.241 - 256  

박지훈 (서울대학교 보건환경연구소) ,  전혜준 (서울대학교 보건대학원 환경보건학과) ,  오영석 (서울대학교 보건대학원 환경보건학과) ,  박경호 (한국건설생활환경시험연구원 건축유해성평가센터) ,  윤충식 (서울대학교 보건환경연구소)

Abstract AI-Helper 아이콘AI-Helper

Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Pre...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서, 본 연구에서는 최근 제조 혁신 분야로 떠오르고 있는 3D 프린팅의 주요 원리와 가용 소재 특성을 폭넓게 정리하였으며, 특히 프린팅 과정에서 발생 가능한 유해 인자를 다룬 기존 연구 결과들을 비교하여 사용자 노출 위험 측면에서 3D 프린팅 과정중 발생하는 유해 인자의 평가와 제어 방안들에 대해 논하고자 한다.
  • 문헌고찰은 기술 및 공학 분야의 기술적 연구 결과는 배제하고 3D 프린팅 과정에서 발생 가능한 유해 인자와노출 평가 등 보건학 분야에서 수행된 연구 논문을 대상으로 하였다. 본 연구에서 다룬 주제는 현재 상용화되어 있는 주요 3D 프린팅 기술과 프린팅 재료 및 건강상 유해인자에 대한 개요와 기존 연구에서 사용한 유해 인자 평가 방법론과 제시된 제어 방안에 대해 중점을 두고 각 내용을 정리하였다.
  • 본 연구에서 헤파필터를 이용하여 발생원 부분을 밀폐 형태로 했을 때 입자의 제거효율이 가장 높은 것으로 보고하였다.
  • 본 연구에서는 현재까지 개발된 주요 3D 프린팅기술과 재료, 그리고 노출 가능한 유해 인자 평가와 관련된 연구를 종합적으로 정리하였다. 앞으로도 개인용 3D 프린터의 보급이 지속적으로 이루어질 것으로 예상됨에 따라 과거 일부 산업용에 국한하여 다루어졌던 기술이 일반 대중에게까지 확대될 것은 분명하다.
  • 현재 상용화된 3D 프린팅 기술과 관련하여 관련보고서와 3D 프린팅 재료와 가동 중 발생 가능한 유해인자에 대한 노출 평가 관련 국내외 연구결과를 정리하였다. 연구보고서의 경우 국가정책연구포털(https:// www.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
3D 프린팅 기술은 어느 분야에서 활용되는가? 특히, 금속재료를 이용한 3D 프린터 시장의 성장은 과거 플라스틱수지나 분말형태의 재료 중심으로 성장했던 3D 프린터 산업의 응용 범위가 확대되고 있는 것을 나타낸다. 3D 프린팅 기술의 활용은 제조업 분야를 포함하여 바이오, 의료, 항공우주, 건축, 각종 개인 생활용품 분야(소비재) 및 고고학 분야에서 완제품을 비롯한 특수부품 제조, 개인 맞춤형 제품 생산에 이르기까지 지속적으로 범위가 확대되고 있다. 이러한 활용 범위의 확대 추세에 따라 세계 3D 프린팅 시장은 산업용, 개인용 3D 프린터 제조와 관련 서비스업종까지 포함하여 2021년에는 100억 달러 이상의 규모로 확장될 것으로 예상된다.
저가형 3D 프린터의 문제점은? 대표적3D 프린팅의 기술인 수지 압출 적층 조형 기술(fused deposition modeling, FDM)의 특허가 만료되면서 저가형 3D 프린터의 보급이 일상생활 속으로 확대됨과 동시에 프린팅 재료나 또는 인쇄 과정에서 발생하는 유해인자에 대한 연구결과도 최근 몇 년 간 꾸준히 발표되고 있다. 특히, 보급형 3D 프린터에 채택되는 프린팅 방식은 대부분 고열이 소재에 가해지는 과정이 필연적이므로 인쇄 과정에서 발생하는 입자상 및 가스상 유해 인자의 발생원이 된다. 3D 프린팅 기술의 확장과 보급형 프린터 시장의 확대로 인해 3D 프린팅에 대한 관심이 커지고 있는 점을 고려했을 때, 보건학적 관점에서의 환경 노출 평가를 위해 선행되어야 할 과제로써 신기술의 특성에 대한 이해와 사용자 측면에서의 유해 인자에 대한 이해 내지는 노출 가능성 전반에 대한 이해가 선행될 필요가 있다.
3D 프린터의 강점은? 적층 가공은 기존 제조업에서의 절삭 가공(subtractive manufacturing)과는 대비되는 방식으로, 실제 3D 프린팅 기술을 포함한 여러 기술을 포함하는 용어로 사용되었으나 최근 3D 프린팅기술이 각광을 받으면서 3D 프린팅 기술이 적층 가공을 대표하는 용어로 사용되고 있다. 3D 프린터는 물체의 3차원 형상을 제작함으로써 정밀한 구현이 가능하며 설계 단계부터 시제품 생산, 테스트 단계에 이르기까지 신속한 진행(rapid prototyping)이 가능하여(Figure 1) 비용경제적인 측면에서 강점을 가진다(Noorani, 2006; Wang et al., 2017).
질의응답 정보가 도움이 되었나요?

참고문헌 (58)

  1. Afshar-Mohajer N, Wu CY, Ladun T, Rajon DA, Huang Y. Characterization of particulate matters and total VOC emissions from a binder jetting 3D printer. Build Environ 2015;93:293-301. 

  2. American Society for Testing and Materials(ASTM) International. Subcommittee F42. 91 on Terminology. Standard terminology for additive manufacturing technologies. 2012. 

  3. Azimi P, Fazli T, Stephens B. Predicting concentrations of ultrafine particles and volatile organic compounds resulting from desktop 3D printer operation and the impact of potential control strategies. J Ind Ecol 2017; 21(S1):S107-S119. 

  4. Azimi P, Zhao D, Pouzet C, Crain NE , Stephens B. Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environ Sci Technol 2016;50(3):1260-1268. 

  5. Berman B. 3D printing: The new industrial revolution. Bus Horizons 2012;55(2):155-162. 

  6. Cheng SF, Chen ML, Hung PC, Chen CJ, Mao IF. Olfactory loss in poly(acrylonitrile-butadiene-styrene) plastic injectionmoulding workers. Occup Med 2004;54(7):469-474. 

  7. Cheves S. A pilot study to evaluate VOCs outgassed in polymer filaments used in 3D printing. 2014:1-26. 

  8. Cho E, Lee H. Initiative of manufacturing innovation. KiET Report Issue No. 2014-344. 2014. 

  9. Chohan JS, Singh R, Boparai KS, Penna R, Fraternali F. Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. Compos Part B-Eng 2017;117:138-149. 

  10. Choi C. Characteristics of particle emissions according to parameter setting. Dissertation of Graduate School of Hanyang University, Seoul, Republic of Korea. 2016. 

  11. Cimino D, Rollo G, Zanetti M, Bracco P. 3d printing technologies: are their materials safe for conservation treatments? IOP Conference Series: Materials Science and Engineering, 2018. IOP Publishing, 012029. 

  12. Cooper KG. Rapid prototyping technology, New York: Marcel Dekker Inc.; 2001. 

  13. Deng Y, Cao SJ, Chen A, Guo Y. The impact of manufacturing parameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction. Build Environ 2016;104:311-319. 

  14. Drummer D, Wudy K, Drexler M. Influence of energy input on degradation behavior of plastic components manufactured by selective laser melting. Physics Pro 2014;56:176-183. 

  15. Du Preez S, Johnson A, LeBouf RF, Linde SJ, Stefaniak AB, et al. Exposures during industrial 3-D printing and post-processing tasks. Rapid Prototyping J 2018:1-8. 

  16. Edgar J, Tint S. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Johnson Matthey Tech 2015;59(3):193-198. 

  17. Elliott A, Ivanova O, Williams C, Campbell T. An investigation of the effects of quantum dot nanoparticles on photopolymer resin for use in polyjet direct 3D printing. Proceedings of the 2012 SFF SSymposium. 2012. 

  18. Forrest M, Jolly A, Holding S, Richards S. Emissions from processing thermoplastics. AnnOccup Hyg 1995;39(1): 35-53. 

  19. Groth C, Kravitz ND, Jones PE, Graham JW, Redmond WR. Three-dimensional printing technology. J Clin Orthod 2014;48(8):475-85. 

  20. Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Tech 2013;67(5-8):1191-1203. 

  21. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci F 2010;9(5): 552-571. 

  22. Jang BN, Wilkie CA. The thermal degradation of bisphenol A polycarbonate in air. Thermochimica Acta 2005;426 (1-2):73-84. 

  23. Kim S, Shim W. Manufacturing innovation and material industiry focusng on advanced materials and 3D printing. KiET Report Issue No. 2016-401. 2016. 

  24. Kim Y, Yoon C, Ham S, Park J, Kim S, et al. Emissions of nanoparticles and gaseous material from 3D printer operation. Environ Sci Technol 2015;49(20):12044-12053. 

  25. Klosterman D, Chartoff R, Graves G, Osborne N, Priore B. Interfacial characteristics of composites fabricated by laminated object manufacturing. Compos Part A-Appl S 1998;29(9-10):1165-1174. 

  26. Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Frechet JM, et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature highresolution selective laser sintering of metal nanoparticles. Nanotechnology 2007;18(34):345202. 

  27. Kruth JP. Material incress manufacturing by rapid prototyping techniques. CIRP Ann-Manuf Technol 1991;40(2): 603-614. 

  28. Kruth JP, Vandenbroucke B, Van Vaerenbergh J, Naert I. Rapid manufacturing of dental prostheses by means of selective laser sintering/melting. Proc AFPR S. 2005; 4:176-186. 

  29. Kuo CC, Liu LC, Teng WF, Chang HY, Chien FM, et al. Preparation of starch/acrylonitrile-butadiene-styrene copolymers(ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos Part B-Eng 2016;86:36-39. 

  30. Kwon O, Yoon C, Ham S, Park J, Lee J, et al. Characterization and control of nanoparticle emission during 3D printing. Environ Sci Technol 2017;51(18):10357-10368. 

  31. Lee JY, An J, Chua CK. Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 2017; 7:120-133. 

  32. Lee K, Lee Y, Lee J, Lee J, Kim Y, et al. The impact of 3D printing on industries and countermeasures. KiET Report Issue No. 2016-817. 2016. 

  33. Lithner D, Larsson A, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 2011; 409(18):3309-3324. 

  34. Mansour OY. Thermal degradation of some thermoplastic polymers in presence of lignin. Polym-Plast Technol 1992;31(9-10):747-758. 

  35. Morvan S, Hochsmann R, Sakamoto M. ProMetal RCT(TM) process for fabrication of complex sand molds and sand cores. Rapid Prototyping 2005;11(2):1-7. 

  36. Mueller B. Additive manufacturing technologies-Rapid prototyping to direct digital manufacturing. Assembly Autom 2012;32(2). 

  37. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing(3D printing): A review of materials, methods, applications and challenges. Compos Part B-Eng 2018;143(15):172-196. 

  38. Noorani R. Rapid prototyping: principles and applications. New York: John Wiley and Sons Inc.; 2006. 

  39. Pham D, Ji C. Design for stereolithography. Proceedings of the Institution of Mechanical Engineers, Part C: J Mech Eng Sci 2000;214(5):635-640. 

  40. Rutkowski JV, Levin BC. Acrylonitrile-butadiene-styrene copolymers(ABS): Pyrolysis and combustion products and their toxicity-a review of the literature. Fire Mater 1986;10(3-4):93-105. 

  41. Ryan T, Hubbard D. 3-D printing hazards: Literature review & preliminary hazard assessment. Prof Saf 2016;61(6): 56-62. 

  42. Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, et al. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mat 2015;16(3):033502. 

  43. Singh S, Ramakrishna S, Singh R. Material issues in additive manufacturing: A review. J Manuf Process 2017;25: 185-200. 

  44. Srivatsan T, Sudarshan T. Additive manufacturing: innovations, advances, and applications, Boca Ranton: CRC Press Inc; 2015. 

  45. Stabile L, Scungio M, Buonanno G, Arpino F , Ficco G. Airborne particle emission of a commercial 3D printer: The effect of filament material and printing temperature. Indoor Air 2017;27(2):398-408. 

  46. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016;32(1):54-64. 

  47. Stefaniak AB, LeBouf RF, Yi J, Ham J, Nurkewicz T, et al. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer. J Occup Env Hyg 2017;14(7):540-550. 

  48. Steinle P. Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. J Occup Env Hyg 2016;13(2):121-132. 

  49. Stephens B, Azimi P, El Orch Z, Ramos T. Ultrafine particle emissions from desktop 3D printers. Atmos Environ 2013;79:334-339. 

  50. Tiganis B, Burn L, Davis P, Hill A. Thermal degradation of acrylonitrile-butadiene-styrene(ABS) blends. Polym Degrad Stabil 2002;76(3):425-434. 

  51. Unwin J, Coldwell MR, Keen C, McAlinden JJ. Airborne emissions of carcinogens and respiratory sensitizers during thermal processing of plastics. Ann Occup Hyg 2012;57(3):399-406. 

  52. Vance ME, Pegues V, Van Montfrans S, Leng W, Marr LC. Aerosol emissions from fuse-deposition modeling 3D printers in a chamber and in real indoor environments. Environ Sci Technol 2017;51(17):9516-9523. 

  53. Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: A review and prospective. Compos Part B-Eng 2017;110:442-458. 

  54. Wojtyla S, Klama P, Baran T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J Occup Env Hyg 2017;14(6):D80-D85. 

  55. Wong KV, Hernandez A. A review of additive manufacturing. ISRN MechaEng 2012:1-10. 

  56. Yang Y, Li L. Total volatile organic compound emission evaluation and control for stereolithography additive manufacturing process. J Clean Prod 2018;170:1268-1278. 

  57. Yi J, LeBouf RF, Duling MG, Nurkiewicz T, Chen BT, et al. Emission of particulate matter from a desktop threedimensional(3D) printer. J Toxic Env Health Part A 2016;79(11):453-465. 

  58. Zhou Y, Kong X, Chen A, Cao S. Investigation of ultrafine particle emissions of desktop 3D printers in the clean room. Procedia Engineer 2015;121:506-512. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로