$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

나노물질을 이용한 질량분석 기술 개발동향
Mass spectrometry based on nanomaterials 원문보기

세라미스트 = Ceramist, v.21 no.3, 2018년, pp.249 - 269  

박종민 (연세대학교 신소재공학과) ,  노주윤 (연세대학교 신소재공학과) ,  김문주 (연세대학교 신소재공학과) ,  변재철 (연세대학교 신소재공학과)

Abstract AI-Helper 아이콘AI-Helper

In conventional MALDI-TOF mass spectrometry, analyte molecules are known to be ionized by mixing with organic matrix molecules. As the organic matrix molecules are made into small fragments, they generate unreproducible mass peaks such that MALDI-TOF mass spectrometry is nearly impossible in the low...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
질량분석을 위해 요구되는 과정은? 분자량은 물질의 특성이므로 분자량의 측정을 통해 대상물의 동정(identification)이 가능하며, 많은 경우 정량(quantification)이 가능한 기술이다. 질량분석을 위해서는 시료를 이온화하는 과정과 이온화된 시료를 질량에 따라 분리하는 과정이 필요하다. 시료의 이온화 과정은 이온화를 위한 소스종류에 따라 분류된다.
질량분석기술이란 무엇인가? 질량분석기술은 분석대상물의 분자량을 측정하는 기술이다. 분자량은 물질의 특성이므로 분자량의 측정을 통해 대상물의 동정(identification)이 가능하며, 많은 경우 정량(quantification)이 가능한 기술이다.
말디톱 질량분석법이 분자량을 산출하는 방법은 무엇인가? 즉, 분자량이 큰 무거운 분자는 상대적으로 작고 가벼운 분자에 비해 탐지기에 도달하는데 상대적으로 긴 시간이 걸리게 된다. 따라서, 탐지기에 도달하기 위해 걸리는 비행시간을 측정하여 분자량을 산출하게 된다. 이와 같이 측정된 분자량을 통해 시료분자의 동정이 가능하며, 탐지기에 도달한 이온량에 따라 질량분석 피트의 크기가 결정 되므로 이온량의 정량이 가능하다(Fig.
질의응답 정보가 도움이 되었나요?

참고문헌 (57)

  1. Siuzdak, G. Mass spectrometry for biotechnology. Elsevier (1996). 

  2. Glish, G. L., & Vachet, R. W. The basics of mass spectrometry in the twenty-first century. Nat. Rev. Drug Discov., 2, 140 (2003). 

  3. Siuzdak, G. An introduction to mass spectrometry ionization: An excerpt from The Expanding Role of Mass Spectrometry in Biotechnology, J. Lab. Autom., 9, 50-63 (2004). 

  4. Schrauzer, G. N., & Guth, T. D. Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc., 99, 7189-7193 (1977). 

  5. Linsebigler, A. L., Lu, G., & Yates Jr, J. T. Photocatalysis on $TiO_2$ surfaces: principles, mechanisms, and selected results. Chem. Rev., 95, 735-758 (1995). 

  6. Wei, J., Buriak, J. M., & Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. Nature, 399, 243 (1999). 

  7. Kang, M. J., Pyun, J. C., Lee, J. C., Choi, Y. J., Park, J. H., Park, J. G., & Choi, H. J. Nanowireassisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun. Mass spectrom., 19, 3166-3170 (2005). 

  8. Kim, J. I., Park, J. M., Kang, M. J., & Pyun, J. C. Parylene-matrix chip for small molecule analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass spectrom., 28, 274-280 (2014). 

  9. Park, J. M., Kim, J. I., Song, H. W., Noh, J. Y., Kang, M. J., & Pyun, J. C. Highly sensitive bacterial susceptibility test against penicillin using parylenematrix chip. Biosens. Bioelectron., 71, 306-312 (2015). 

  10. Park, J. M., Kim, J. I., Noh, J. Y., Kim, M., Kang, M. J., & Pyun, J. C. Hypersensitive antibiotic susceptibility test based on a ${\beta}$ -lactamase assay with a parylene-matrix chip. Enzyme Microb. Technol., 97, 90-96 (2017). 

  11. Kim, J. I., Park, J. M., Noh, J. Y., Kang, M. J., & Pyun, J. C. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of small volatile molecules using a parylene-matrix chip. Rapid Commun. Mass spectrom., 28, 2301-2306 (2014). 

  12. Kim, J. I., Ryu, S. Y., Park, J. M., Noh, J. Y., Kang, M. J., Kwak, S. Y., & Pyun, J. C. Nylon nanoweb with $TiO_2$ nanoparticles as a solid matrix for matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass spectrom., 28, 2427-2436 (2014). 

  13. Kim, J. I., Park, J. M., Hwang, S. J., Kang, M. J., & Pyun, J. C. Top-down synthesized $TiO_2$ nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Anal. Chim. Acta, 836, 53-60 (2014). 

  14. Kim, J. I., Park, J. M., Noh, J. Y., Hwang, S. J., Kang, M. J., & Pyun, J. C. Analysis of benzylpenicillin in milk using MALDI-TOF mass spectrometry with top-down synthesized $TiO_2$ nanowires as the solid matrix. Chemosphere, 143, 64-70 (2016). 

  15. Park, J. M., Jung, H. W., Chang, Y. W., Kim, H. S., Kang, M. J., & Pyun, J. C. Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity. Anal. Chim. Acta, 853, 360-367 (2015). 

  16. Wang, J., Liu, Q., Liang, Y., & Jiang, G. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem., 408, 2861-2873 (2016). 

  17. Kong, X., & Huang, Y. Applications of graphene in mass spectrometry. J. Nanosci. Nanotechnol, 14, 4719-4732 (2014). 

  18. Dong, X., Cheng, J., Li, J., & Wang, Y. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal. Chem., 82, 6208-6214 (2010). 

  19. Lu, M., Lai, Y., Chen, G., & Cai, Z. Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal. Chem., 83, 3161-3169 (2011). 

  20. Lu, M., Lai, Y., Chen, G., & Cai, Z. Laser desorption/ionization on the layer of graphene nanoparticles coupled with mass spectrometry for characterization of polymers. Chem. Comm., 47, 12807-12809 (2011). 

  21. Tang, L. A. L., Wang, J., & Loh, K. P. Graphenebased SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. J. Am. Chem. Soc., 132, 10976-10977 (2010). 

  22. Liu, Y., Liu, J., Yin, P., Gao, M., Deng, C., & Zhang, X. High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. J. Mass spectrom., 46, 804-815 (2011). 

  23. Liu, Y., Liu, J., Deng, C., & Zhang, X. Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference. Rapid Commun. Mass spectrom., 25, 3223-3234 (2011). 

  24. Zhou, X., Wei, Y., He, Q., Boey, F., Zhang, Q., & Zhang, H. Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem. Comm., 46, 6974-6976 (2010). 

  25. Sunner, J., Dratz, E., & Chen, Y. C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem., 67, 4335-4342 (1995). 

  26. Chen, Y. C., & Wu, J. Y. Analysis of small organics on planar silica surfaces using surface-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass spectrom., 15, 1899-1903 (2001). 

  27. Xu, S., Li, Y., Zou, H., Qiu, J., Guo, Z., & Guo, B. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem., 75, 6191-6195 (2003). 

  28. Lee, J., Kim, Y. K., & Min, D. H. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J. Am. Chem. Soc., 132, 14714-14717 (2010). 

  29. Gholipour, Y., Giudicessi, S. L., Nonami, H., & Erra-Balsells, R. Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Anal. Chem., 82, 5518-5526 (2010). 

  30. Najam-ul-Haq, M., Rainer, M., Huck, C. W., Hausberger, P., Kraushaar, H., & Bonn, G. K. Nanostructured diamond-like carbon on digital versatile disc as a matrix-free target for laser desorption/ionization mass spectrometry. Anal. Chem., 80, 7467-7472 (2008). 

  31. Mills, A., & Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A: Chemistry, 108, 1-35 (1997). 

  32. Kruse, R. A., Rubakhin, S. S., Romanova, E. V., Bohn, P. W., & Sweedler, J. V. Direct assay of Aplysia tissues and cells with laser desorption/ionization mass spectrometry on porous silicon. J. Mass spectrom., 36, 1317-1322 (2001). 

  33. Muck, A., Stelzner, T., Hubner, U., Christiansen, S., & Svatos, A. Lithographically patterned silicon nanowire arrays for matrix free LDI-TOF/MS analysis of lipids. Lab on a Chip, 10, 320-325 (2010). 

  34. Chen, C. T., & Chen, Y. C. Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun. Mass spectrom., 18, 1956-1964 (2004). 

  35. Lee, K. H., Chiang, C. K., Lin, Z. H., & Chang, H. T. Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass spectrom., 21, 2023-2030 (2007). 

  36. Watanabe, T., Kawasaki, H., Yonezawa, T., & Arakawa, R. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J. Mass spectrom., 43, 1063-1071 (2008). 

  37. Grechnikov, A. A., Georgieva, V. B., Alimpiev, S. S., Borodkov, A. S., Nikiforov, S. M., Simanovsky, Y. O., & Angelov, O. I. Investigation of thin ZnO layers in view of laser desorption-ionization. In J. Phys., 223, 12038 (2010). 

  38. Kailasa, S. K., Kiran, K., & Wu, H.-F. Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem., 80, 9681-9688 (2008). 

  39. Kailasa, S. K., & Wu, H.-F. Interference free detection for small molecules: Probing the $Mn^{2+}$ -doped effect and cysteine capped effect on the ZnS nanoparticles for coccidiostats and peptide analysis in SALDI-TOF MS. Analyst, 135, 1115-1123 (2010). 

  40. Ke, Y., Kailasa, S. K., Wu, H.-F., & Chen, Z.-Y. High resolution detection of high mass proteins up to 80,000 Da via multifunctional CdS quantum dots in laser desorption/ionization mass spectrometry. Talanta, 83, 178-184 (2010). 

  41. Shrivas, K., Kailasa, S. K., & Wu, H. F. Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics, 9, 2656-2667 (2009). 

  42. Sato, H., Nemoto, A., Yamamoto, A., & Tao, H. Surface cleaning of germanium nanodot ionization substrate for surface-assisted laser desorption/ ionization mass spectrometry. Rapid Commun. Mass spectrom., 23, 603-610 (2009). 

  43. Brongersma, M. L., Halas, N. J., & Nordlander, P. Plasmon-induced hot carrier science and technology, Nat. Nanotechnol., 10, 25-34 (2015). 

  44. Hinman, S. S., Chen, C. Y., Duanb, J., & Cheng, Q. Calcinated gold nanoparticle arrays for on-chip, multiplexed and matrix-free mass spectrometric analysis of peptides and small molecules, Nanoscale, 8, 1655-1675 (2016). 

  45. Misawa, M., & Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations, Nanomedicine: NBM, 7, 604-614 (2011). 

  46. Kawasaki, H., Sugitani, T., Watanabe, T., Yonezawa, T., Moriwaki, H., & Arakawa, R. Layer-by-Layer Self-Assembled Multilayer Films of Gold Nanoparticles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry, Anal. Chem., 80, 7524-7533 (2008). 

  47. Nayak, R., & Knapp, D. R. Matrix-Free LDI Mass Spectrometry Platform using Patterned Nanostructured Gold Thin Film, Anal. Chem., 82, 7772-7778 (2010). 

  48. Castellana, E. T., Gamez, R. C., Gomez, M. E., & Russel, D. H. Longitudinal Surface Plasmon Resonance Based Gold Nanorod Biosensors for Mass Spectrometry, Langmuir, 26, 6066-6070 (2010). 

  49. Yonezawa, T., Kawasaki, H., Tarui, A., Watanabe, T., Arakawa, R., Shimada, T., & Mafune, F. Detailed Investigation on the Possibility of Nanoparticles of Various Metal Elements for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry, Anal. Sci., 25, 339-346 (2009). 

  50. Su, C. L., & Tseng, W. L. Gold Nanoparticles as Assisted Matrix for Determining Neutral Small Carbohydrates through Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, Anal. Chem., 79, 1626-1633 (2007). 

  51. Spencer, M. T., Furutani, H., Oldenburg, S. J., Darlington, T. K., & Prather, K. A. Gold Nanoparticles as a Matrix for Visible-Wavelength Single-Particle Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Small Biomolecules, J. Phys. Chem. C, 112, 4083-4090 (2008). 

  52. Kawasaki, H., Yonezawa, T., Watanabe, T., & Arakawa, R. Platinum Nanoflowers for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Biomolecules, J. Phys. Chem. C, 111, 16278-16283 (2007). 

  53. Shrivas, K., Agrawal, K., & Wu, H. F. Application of Platinum Nanoparticles as Affinity Probe and Matrix for Direct Analysis of Small Biomolecules and Microwave Digested Proteins using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry, Analyst, 136, 2852-2857 (2011). 

  54. Sherrod, S. D., Diaz, A. J., Russell, W. K., Cremer, P. S., & Russell, D. H. Silver Nanoparticles as Selective Ionization Probes for Analysis of Olefins by Mass Spectrometry, Anal. Chem., 80, 6796-6799 (2008). 

  55. Chiu, T. C., Chang, L. C., Chiang, C. K., & Chang, H. T. Determining Estrogens Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Silver Nanoparticles as the Matrix, J. Am. Soc. Mass Spectrom., 19, 1343-1346 (2008). 

  56. Hayasaka, T., Goto-Inoue, N., Zaima, N., Shrivas, K., Kashiwagi, Y., Yamamoto, M., Nakamoto, M., & Setou, M. Imaging Mass Spectrometry with Silver Nanoparticles Reveals the Distribution of Fatty Acids in Mouse Retinal Sections, J. Am. Soc. Mass Spectrom., 21, 1446-1454 (2010). 

  57. Yalcin, T., & Li, L. Cobalt Coated Substrate for Matrix-Free Analysis of Small Molecules by Laser Desorption/Ionization Mass Spectrometry, Appl. Surf. Sci., 256, 1309-1312 (2009). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로