$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Biocatalytic Production of Glucosamine from N-Acetylglucosamine by Diacetylchitobiose Deacetylase 원문보기

Journal of microbiology and biotechnology, v.28 no.11, 2018년, pp.1850 - 1858  

Jiang, Zhu (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Lv, Xueqin (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Liu, Yanfeng (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Shin, Hyun-dong (School of Chemical and Biomolecular Engineering, Georgia Institute of Technology) ,  Li, Jianghua (Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University) ,  Du, Guocheng (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University) ,  Liu, Long (Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University)

Abstract AI-Helper 아이콘AI-Helper

Glucosamine (GlcN) is widely used in the nutraceutical and pharmaceutical industries. Currently, GlcN is mainly produced by traditional multistep chemical synthesis and acid hydrolysis, which can cause severe environmental pollution, require a long prodution period but a lower yield. The aim of this...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • subtilis WB600 as the control. All the constructs were confirmed by restriction analysis and DNA sequencing. E.
  • The enzymatic properties were evaluated to optimize the key variables of GlcN production by each whole-cell biocatalyst. The effects of pH on GlcN production were evaluated by analyzing the whole-cell biocatalyst reaction rate in Na2HPO4–NaH2PO4 buffers at pH levels ranging from 5.

이론/모형

  • GlcN were quantified by HPLC (Agilent1260 series, USA) on a Thermo ODS-2 HYPERSIL C18 column (250 mm × 4.0 mm, USA) by the ortho-phthalaldehyde (OPA) precolumnde rivatization method [22, 23].
  • Protein concentration was measured by Bradford method (Bradford 1976) using bovine serum albumin as the standard.
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. Chen JK, Shen CR, Liu CL. 2010. N-acetylglucosamine: production and applications. Marine Drugs 8: 2493-2516. 

  2. Nakamura H. 2011. Application of glucosamine on human disease-Osteoarthritis. Carbohydr. Polym. 84: 835-839. 

  3. Hungerford DS, Jones LC. 2003. Glucosamine and chondroitin sulfate are effective in the management of osteoarthritis. J. Arthroplasty. 18: 5-9. 

  4. Towheed TE. 2003. Current status of glucosamine therapy in osteoarthritis. Arthritis Rheum. 49: 601-604. 

  5. Sitanggang AB, Wu HS, Wang SS, Ho YC. 2010. Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742. Bioresour. Technol. 101: 3595-3601. 

  6. Zhang J, Liu L, Li J, Du G, Chen J. 2012. Enhanced glucosamine production by Aspergillus sp. BCRC 31742 based on the time-variant kinetics analysis of dissolved oxygen level. Bioresour. Technol. 111: 507-511. 

  7. Chen X, Liu L, Li J, Du G, Chen J. 2012. Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level. Bioresour. Technol. 110: 534-538. 

  8. Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, et al. 2005. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab. Eng. 7: 201-214. 

  9. Liu Y, Liu L, Shin HD, Chen RR, Li J, Du G, et al. 2013. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metab. Eng. 19: 107-115. 

  10. Mine S, Ikegami T, Kawasaki K, Nakamura T, Uegaki K. 2012. Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii. Protein Expr. Purif. 84: 265-269. 

  11. Kang Z, Yang S, Du G, Chen J. 2014. Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J. Ind. Microbiol. Biotechnol. 41: 1599-1607. 

  12. Tanaka T, Fukui T, Fujiwara S, Atomi H, Imanaka T. 2004. Concerted action of diacetylchitobiose deacetylase and exobeta- D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Biol. Chem. 279: 30021-30027. 

  13. Mine S, Niiyama M, Hashimoto W, Ikegami T, Koma D, Ohmoto T, et al. 2014. Expression from engineered Escherichia coli chromosome and crystallographic study of archaeal N,N'-diacetylchitobiose deacetylase. FEBS J. 281: 2584-2596. 

  14. Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, et al. 2012. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335: 1103-1106. 

  15. Promchai R, Promdonkoy B, Tanapongpipat S, Visessanguan W, Eurwilaichitr L, Luxananil P. 2016. A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis. J. Biotechnol. 222: 86-93. 

  16. Bertram R , Rigali S , Wood N , L ulko A T, K uipers O P, Titgemeyer F. 2011. Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J. Bacteriol. 193: 3525-3536. 

  17. Vincent F, Yates D, Garman E, Davies GJ, Brannigan JA. 2004. The three-dimensional structure of the N-acetylglucosamine- 6-phosphate deacetylase, NagA, from Bacillus subtilis: a member of the urease superfamily. J. Biol. Chem. 279: 2809-2816. 

  18. Song Y, Li J, Shin HD, Du G, Liu L, Chen J. 2015. One-step biosynthesis of alpha-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Sci. Rep. 5: 12614. 

  19. Westers L, Westers H, Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299-310. 

  20. Zhang XZ, Cui ZL, Hong Q, Li SP. 2005. High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl. Environ. Microbiol. 71: 4101-4103. 

  21. Mine S, Ikegami T, Kawasaki K, Nakamura T, Uegaki K. 2012. Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii. Protein Express. Purification 84: 265-269. 

  22. Shi F, Li K, Huan X, Wang X. 2013. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl. Biochem. Biotechnol. 171: 504-521. 

  23. Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ. 2007. L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl. Environ. Microbiol. 73: 2079-2084. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로