$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Facile Fabrication of Flexible In-Plane Graphene Micro-Supercapacitor via Flash Reduction 원문보기

ETRI journal, v.40 no.2, 2018년, pp.275 - 282  

Kang, Seok Hun (ICT Materials & Components Research Laboratory, ETRI) ,  Kim, In Gyoo (ICT Materials & Components Research Laboratory, ETRI) ,  Kim, Bit-Na (ICT Materials & Components Research Laboratory, ETRI) ,  Sul, Ji Hwan (ICT Materials & Components Research Laboratory, ETRI) ,  Kim, Young Sun (Korea Electronics Technology Institute) ,  You, In-Kyu (ICT Materials & Components Research Laboratory, ETRI)

Abstract AI-Helper 아이콘AI-Helper

Flash reduction of graphene oxide is an efficient method for producing high quality reduced graphene oxide under room temperature ambient conditions without the use of hazardous reducing agents (such as hydrazine and hydrogen iodide). The entire process is fast, low-cost, and suitable for large-scal...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this study, we report a facile fabrication method for an interdigitated graphene MSC with a single flash irradiation, which occurs in only a few milliseconds. This process is even more scalable than laser scribing techniques because it can reduce a large area of GO film instantaneously.
  • Photograph of multiple FrGO electrodes, photograph and time-resolved power profile of xenon flash lamp equipment, optimization of photoreduction conditions, EDS mapping images of FrGO electrode, and CV curves at high scan rates.
본문요약 정보가 도움이 되었나요?

참고문헌 (30)

  1. G. Xiong, C. Meng, R.G. Reifenberger, P.P. Irazoqui, and T.S. Fisher, "A Review of Graphene-Based Electrochemical Microsupercapacitors," Electroanal., vol. 26, no. 1, Jan. 2014, pp. 30-51. 

  2. M. Beidaghi and Y. Gogotsi, "Capacitive Energy Storage in Micro-Scale Devices: Recent Advances in Design and Fabrication of Micro-Supercapacitors," Energy Environ. Sci., vol. 7, no. 3, 2014, pp. 867-884. 

  3. K. Wang, W. Zou, B. Quan, A. Yu, H. Wu, and P. Jang, "An All-Solid-State Flexible Micro-Supercapacitor on a Chip," Adv. Energy Mater., vol. 1, no. 6, Nov. 2011, pp. 1068-1072. 

  4. Z. Liu et al., "Ultra?exible in-Plane Micro-Supercapacitors by Direct Printing of Solution-Processable Electrochemically Exfoliated Graphene," Adv. Mater., vol. 28, no. 11, Mar. 2016, pp. 2217-2222. 

  5. Z.-S. Wu, S. Yang, L. Zhang, J.B. Wagner, X. Feng, and K. Mullen, "Binder-Free Activated Graphene Compact Films for All-Solid-State Micro-Supercapacitors with High Areal and Volumetric Capacitances," Energy Storage Mater., vol. 1, no. 11, Nov. 2015, pp. 119-126. 

  6. J.J. Yoo et al., "Ultrathin Planar Graphene Supercapacitors," Nano Lett., vol. 11, no. 4, 2011, pp. 1423-1427. 

  7. H. Hu, K. Zhang, S. Li, S. Jia, and C. Ye, "Flexible, in- Plane, and All-Solid-State Micro-Supercapacitors Based on Printed Interdigital Au/Polyaniline Network Hybrid Electrodes on a Chip," J. Mater. Chem. A, vol. 2, no. 48, 2014, pp. 20916-20922. 

  8. Z.S. Wu, K. Parvez, X. Feng, and K. Mullen, "Graphene- Based in-Plane Micro-Supercapacitors with High Power and Energy Densities," Nature Commun., vol. 4, 2013, p. 2487. 

  9. M. Xue et al., "Micro?uidic Etching for Fabrication of Flexible and All-Solid-State Micro Supercapacitor Based on $MnO_2$ Nanoparticles," Nanoscale, vol. 3, no. 7, 2011, pp. 2703-2708. 

  10. J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, and Y. Gogotsi, "Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors," Sci., vol. 328, no. 5977, Apr. 2010, pp. 480-483. 

  11. S.K. Kim, H.-J. Koo, A. Lee, and P.V. Braun, "Selective Wetting-Induced Micro-Electrode Patterning for Flexible Micro-Supercapacitors," Adv. Mater., vol. 26, no. 30, Aug. 2014, pp. 5108-5112. 

  12. B. Yao et al., "Paper-Based Solid-State Supercapacitors with Pencil-Drawing Graphite/Polyaniline Networks Hybrid Electrodes," Nano Energy, vol. 2, no. 6, 2013, pp. 1071- 1078. 

  13. X. Liu, T. Qian, N. Xu, J. Zhou, J. Guo, and C. Yan, "Preparation of on Chip, Flexible Supercapacitor with High Performance Based on Electrophoretic Deposition of Reduced Graphene Oxide/Polypyrrole Composites," Carbon, vol. 92, 2015, pp. 348-353. 

  14. L. Peng, X. Peng, B. Liu, C. Wu, Y. Xie, and G. Yu, "Ultrathin Two-Dimensional MnO2/Graphene Hybrid Nanostructures for High-Performance, Flexible Planar Supercapacitors," Nano Lett., vol. 13, no. 5, 2013, pp. 2151-2157. 

  15. M. Beidaghi and C. Wang, "Micro-Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance," Adv. Funct. Mater., vol. 22, no. 21, Nov. 2012, pp. 4501-4510. 

  16. J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, and M. Ostling, "Ef?cient Inkjet Printing of Graphene," Adv. Mater., vol. 25, no. 29, 2013, pp. 3985-3992. 

  17. G. Sun, J. An, C.K. Chua, H. Pang, J. Zhang, and P. Chen, "Layer-by-Layer Printing of Laminated Graphene-Based Interdigitated Microelectrodes for Flexible Planar Micro- Supercapacitors," Electrochem. Commun., vol. 51, Feb. 2015, pp. 33-36. 

  18. W. Gao et al., "Direct Laser Writing of Micro-Supercapacitors on Hydrated Graphite Oxide Films," Nature Nanotechn., vol. 6, no. 8, 2011, pp. 496-500. 

  19. M.F. El-Kady and R.B. Kaner, "Scalable Fabrication of High-Power Graphene Micro-Supercapacitors for Flexible and On-chip Energy Storage," Nature Commun., vol. 4, 2013, p. 1475. 

  20. L. Cao et al., "Direct Laser-Patterned Micro-Supercapacitors from Paintable $MoS_2$ Films," Small, vol. 9, no. 17, Sept. 2013, pp. 2905-2910. 

  21. R.-Z. Li et al., "High-Rate in-Plane Micro-Supercapacitors Scribed onto Photo Paper Using in Situ Femtolaser-Reduced Graphene Oxide/Au Nanoparticle Microelectrodes," Energy Environ. Sci., vol. 9, no. 4, 2016, pp. 1458-1467. 

  22. Z. Peng, J. Lin, R. Ye, E.L.G. Samuel, and J.M. Tour, "Flexible and Stackable Laser-Induced Graphene Supercapacitors," ACS Appl. Mater. Interfaces., vol. 7, no. 5, Feb. 2015, pp. 3414-3419. 

  23. S.-H. Park and H.-S. Kim, "Environmentally Benign and Facile Reduction of Graphene Oxide by Flash Light Irradiation," Nanotechnol., vol. 26, no. 20, May 2015, p. 205601. 

  24. Y. Xue, L. Zhua, H. Chen, J. Qu, and L. Dai, "Multiscale Patterning of Graphene Oxide and Reduced Graphene Oxide for Flexible Supercapacitors," Carbon, vol. 92, Oct. 2015, pp. 305-310. 

  25. J. Yan et al., "Advanced Asymmetric Supercapacitors Based on Ni(Oh)2/Graphene and Porous Graphene Electrodes with High Energy Density," Adv. Funct. Mater., vol. 22, no. 12, 2012, pp. 2632-2641. 

  26. G. Eda, G. Fanchini, and M. Chhowalla, "Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material," Nature Nanotechn., vol. 3, no. 5, 2008, pp. 270-274. 

  27. A.C. Ferrari et al., "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., vol. 97, no. 18, Oct. 2006, p. 187401. 

  28. J. Lin et al., "3-Dimensional Graphene Carbon Nanotube Carpet-Based Microsupercapacitors with High Electrochemical Performance," Nano Lett., vol. 13, no. 1, Jan. 2013, pp. 72-78. 

  29. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, "Graphene and Carbon Nanotube Composite Electrodes for Supercapacitors with Ultra-High Energy Density," Phys. Chem. Chem. Phys., vol. 13, no. 39, 2011, pp. 17615-17624. 

  30. X. Wang et al., "Three-Dimensional Hierarchical GeSe2 Nanostructures for High Performance Flexible All-Solid- State Supercapacitors," Adv. Mater., vol. 25, no. 10, Mar. 2013, pp. 1479-1486. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로