$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

딥러닝을 활용한 무선 전송 및 접속 기술 동향
Research Trends on Wireless Transmission and Access Technologies Using Deep Learning 원문보기

전자통신동향분석 = Electronics and telecommunications trends, v.33 no.5, 2018년, pp.13 - 23  

김근영 (미래이동통신연구본부) ,  명정호 (미래이동통신연구본부) ,  서지훈 (미래이동통신연구본부)

Abstract AI-Helper 아이콘AI-Helper

Deep learning is a promising solution to a number of complex problems based on its inherent capability to approximate almost all types of functions without the demand for handcrafted feature extraction. New wireless transmission and access schemes based on deep learning are being increasingly propos...

참고문헌 (47)

  1. T. Wang et al., "Deep Learning for wireless Physical Layer: Opportunities and Challenges," China Commun., vol. 14, no. 11, Nov. 2017, pp. 92-111. 

  2. C. Wang, P. Patras, and H. Haddadi, "Deep Learning in Mobile and Wireless Networking: A Survey," eprint arXiv: 1803.04311, Mar. 2018. 

  3. Q. Mao, F. Hu, and Q. Hao, "Deep Learning for Intelligent Wireless Networks: A Comprehensive Survey," IEEE Commun. Surveys Tutorials, Early Access, June 2018. 

  4. M. Chen et al., "Machine Learning for Wireless Networks with Artificial Intelligence: A Tutorial on Neural Networks," eprint arXiv: 1710.02913, Oct. 2017. 

  5. X. You et al., "AI for 5G: Research Directions and Paradigms," eprint arXiv: 1807.08671, July 2018. 

  6. Z. Qin et al., "Deep Learning in Physical Layer Communications," eprint arXiv: 1807.11713, July 2018. 

  7. T.M. Mitchell, Machine Learning, McGraw-Hill: Boston, MA, USA, 1997. 

  8. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction (2nd Edition), MIT Press: Cambridge, MA, USA, 2018. 

  9. V.N. Vapnik, The Nature of Statistical Learning Theory, Springer: New York, USA, 2013. 

  10. G. James et al., An Introduction to Statistical Learning: with Applicationsin R, Springer: New York, USA, 2014. 

  11. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer: New York, USA, 2016. 

  12. G. Cybenko, "Approximation by Superpositions of a Sigmoidal Function," Math. Contr., Signals, Syst., vol. 2, no. 4, Dec. 1989, pp. 303-314. 

  13. K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw., vol. 4, 1991, pp. 251-257. 

  14. I. Goodfellow, Y. Bengio, and A. Kourville, Deep Learning, MIT Press: Cambridge, MA, USA, 2016. 

  15. T.J. O'Shea and J. Hoydis, "An Introduction to Deep Learning for the Physical Layer," IEEE Trans. Cognitive Commun. Netw., vol. 3, no. 4, 2017, pp. 563-575. 

  16. DEEPSIG DATASET: RADIOML 2016. 10A. https://www.deepsig.io/datasets/ 

  17. D. George and E.A. Huerta, "Deep Neural Networks to Enable Real-Time Multimessenger Astrophysics," Phys. Rev. D, vol. 97, no. 4, 2018, Article no. 044039. 

  18. A. Hirose, Complex-Valued Neural Networks, Springer Science & Business Media: Berlin, Germany, 2012. 

  19. M.F. Amin et al., "Wirtinger Calculus Based Gradient Descent and Levenberg-Marquardt Learning Algorithms in Complex-Valued Neural Networks," In B.L. Lu, L. Zhang, and J. Kwok (eds), Lecture Notes in Computer Science, vol 7062, Springer: Berlin, Heidelberg, 2011. 

  20. T. O'Shea, T. Erpek, and T. C. Clancy, "Deep Learning Based MIMO Communications," arXiv preprint arXiv: 1707.07980, 2017. 

  21. S. Drner et al., "Deep Learning-Based Communication Over the Air," Asilomar Conf. Signals, Syst. Comput., vol. 12, no. 1, Oct. 2017, pp. 1791-1795. 

  22. T.J. O'Shea, K. Karra, and T. C. Clancy, "Learning to Communicate: Channel Auto-Encoders Domain Specific Regularizers and Attention," in IEEE Int. Symp. Signal Process. Inform. Technol., Limassol. Cyprus, Dec. 12-14 2016, pp. 223-228. 

  23. E. Nachmani et al., "Deep Learning Methods for Improved Decoding of Linear Codes," IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, 2018, pp. 119-131. 

  24. S. Hemati and A.H. Banihashemi, "Dynamics and Performance Analysis of Analog Iterative Decoding for Low-Density Parity-Check (LDPC) Codes," IEEE Trans. Commun., vol. 54, no. 1, Jan. 2006, pp. 61-70. 

  25. F. Liang, C. Shen, and F. Wu, "An Iterative BP-CNN Architecture for Channel Decoding," IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, 2018, pp. 144-159. 

  26. E. Nachmani et al., "RNN Decoding of Linear Block Codes," arXiv preprint arXiv: 1702.07560, 2017 

  27. W. Lyu et al., "Performance Evaluation of Channel Decoding With Deep Neural Networks," in IEEE Int. Conf. Commun. (ICC), Kansas, MO, USA, May 20-24, 2018, pp. 1-6. 

  28. N. Samuel, T. Diskin, and A. Wiesel, "Deep MIMO Detection," in IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Sapporo, Japan, July 3-6, 2017, pp. 690-694. 

  29. X. Yan et al., "Signal Detection of MIMO-OFDM System Based on Auto Encoder and Extreme Learning Machine," in Int. Joint Conf. Neural Netw. (IJCNN), Anchorage, AK, USA, May 14-19, 2017, pp. 1602-1606. 

  30. Y.-S. Jeon, S.-N. Hong, and N. Lee, "Blind Detection for MIMO Systems with Low-Resolution ADCs Using Supervised Learning," Proc. IEEE Int. Conf. Commun. (ICC), Paris, France, May 21-25, 2017, pp. 1-6. 

  31. M. Imanishi, S. Takabe, and T. Wadayama, "Deep Learning-Aided Iterative Detector for Massive Overloaded MIMO Channels," arXiv preprint arXiv: 1806.10827, 2018. 

  32. X. Jin and H. Kim, "Deep Learning Detection Networks in MIMO Decode-Forward Relay Channels," arXiv preprint arXiv: 1807.09571, 2018. 

  33. N. Farsad and A. Goldsmith, "Detection Algorithms for Communication Systems Using Deep Learning," arXiv preprint arXiv: 1705.08044, 2017. 

  34. H. Ye, G.Y. Li, and B.-H.F. Juang, "Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems," IEEE Wireless Commun. Lett., vol. 7, no. 1, Feb. 2018, pp. 114-117. 

  35. D. Neumann, W. Utschick, and T. Wiese, "Deep Channel Estimation," in WSA, Berlin, Germany, Mar. 15-17, 2017, pp. 1-6. 

  36. C.-K. Wen, W.-T. Shih, and S. Jin, "Deep Learning for Massive MIMO CSI Feedback," IEEE Wireless Commun. Lett., Early Access, 2018. 

  37. H. Nikopour and H. Baligh, "Sparse Code Multiple Access," in IEEE Annu. Int. Symp. Personal, Indoor, Mobile Radio Commun. (PIMRC), London, UK, Sept. 8-11, 2013, pp. 332-336. 

  38. M. Taherzadeh et al., "SCMA Codebook Design," in IEEE Veh. Technol. Conf. (VTC2014-Fall), Vancouver, Canada, Sept. 14-17, 2014, pp. 1-5. 

  39. Y. Wu et al., "Sparse Code Multiple Access for 5G Radio Transmission," in IEEE Veh. Technol. Conf. (VTC-Fall), Toronto, Canada, Sept. 24-27, 2017, pp. 1-6. 

  40. M. Kim et al., "Deep Learning-Aided SCMA," IEEE Commun. Lett., vol. 22, no. 4, Apr. 2018, pp. 720-723. 

  41. Y. Saito et al., "Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access," IEEE Veh. Technol. Conf. (VTC Spring), Dresden, Germany, June 2-5, 2013, pp. 1-5. 

  42. L. Dai et al., "Non-Orthogonal Multiple Access for 5G: Solutions, Challenges, Opportunities, and Future Research Trends," IEEE Commun. Mag., vol. 53, no. 9, Sept. 2015, pp. 74-81. 

  43. G. Gui et al., "Deep Learning for An Effective Non-Orthogonal Multiple Access Scheme," in IEEE Trans. Veh. Technol., Early Access, 2018. 

  44. H. Sun et al., "Learning to Optimize: Training Deep Neural Networks for Wireless Resource Management," eprint arXiv: 1705.09412, Oct. 2017. 

  45. W. Lee, M. Kim, and D. Cho, "Deep Power Control: Transmit Power Control Scheme Based on Convolutional Neural Network," IEEE Commun. Lett., vol. 22, no. 6, June 2018, pp. 1276-1279. 

  46. F. Liang et al., "Towards Optimal Power Control via Ensembling Deep Neural Networks," eprint arXiv: 1807.10025, July 2018. 

  47. M. A. Wijaya, K. Fukawa and H. Suzuki, "Intercell-Interference Cancellation and Neural Network Transmit Power Optimization for MIMO Channels," in IEEE Veh. Technol. Conf. (VTC2015-Fall), Boston, MA, USA, Sept. 6-9, 2015, pp. 1-5 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로