$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

인공광 식물공장에서 수경배양액 및 광질 조절이 상추 실생묘 생장에 미치는 영향
Hydroponic Nutrient Solution and Light Quality Influence on Lettuce (Lactuca sativa L.) Growth from the Artificial Light Type of Plant Factory System 원문보기

한국환경농학회지 = Korean journal of environmental agriculture, v.38 no.4, 2019년, pp.225 - 236  

허정욱 (농촌진흥청 국립농업과학원 농업공학부) ,  박경훈 (농촌진흥청 감사담당관실) ,  홍승길 (농촌진흥청 기술협력국) ,  이재수 (농촌진흥청 국립농업과학원 농업공학부) ,  백정현 (농촌진흥청 국립농업과학원 농업공학부)

초록
AI-Helper 아이콘AI-Helper

인공광 식물공장에서는 작물을 생산하기 위하여 일반적으로 화학비료 유래 무기성분을 포함하는 배양액을 시용하여 수경재배한다. 본 연구에서는 광질이 상이한 식물공장에서 관행의 무기배양액 일부 또는 전량을 유기배양액으로 대체할 수 있는 폐기 농업부산물 유래 유기배양액을 시용하여 수경재배하고 작물의 생장에 미치는 영향을 검토하였다. 청색, 적색 및 백색 LED를 1:2:1의 비율로 혼합한 혼합LED 및 관행의 형광등 조사 조건에서 적치마와 청치마 상추 실생묘를 35일간 수경재배한 결과, 적치마와 청치마 상추의 생체중 및 전개엽수 증가는 형광등을 조사한 Y구에서 통계적으로 유의하게 증가하였다. 그러나 유·무기 혼합배양액 처리구인 YK 및 YTJ에서는 오히려 혼합LED 조사구에서 증가하였다. 유기배양액 단용 또는 유·무기 혼합배양액 처리시 엽내 SPAD치는 두 실생묘 모두 Y구와 유사하거나 증가하는 경향을 나타내었다. 관행의 무기배양액인 Y구에서 배양액내 구성성분 중 가장 많은 양을 차지하고 있는 무기성분인 NO3-N은 재배 개시일에 약 97 mg/L으로, 적치마와 청치마 상추 실생묘에서 모두 재배기간이 경과함에 따라 감소하는 경향을 보였다. 적치마의 경우 재배종료시 각 처리구별 NO3-N 농도는 형광등 조사시 약 29 mg/L, 혼합LED 조사시 24 mg/L였으며, 청치마의 경우 형광등 조사시 약 26 mg/L, 혼합LED 조사시 47 mg/L로, 초기 투입량 대비 25~48% 정도의 양이 재배종료시까지 흡수되지 않고 남아 있었다. 재배개시일 NH3-N 농도는 Y구3-N 잔여량은 약 13%로 최대값을 나타내었다. 관행의 무기배양액내 질산태질소는 작물체에 흡수되어 생체중, 엽수 증가와 같은 지상부 생장을 좌우하는 주요 성분이지만 재배종료시까지 전량이 흡수되지 않고 남아 있는 것으로 보아 상추 수경재배시 배양액내 질산태질소의 초기 투입량을 조절할 필요성이 대두되었다. 연구결과 농업부산물 유래 유기배양액을 활용하여 적치마와 청치마 상추를 수경재배할 경우 유기배양액 단용보다 유·무기 혼합배양액 시용으로 유기배양액내 부족한 질소 성분을 무기질소로 보충할 수 있어 무기성분 사용량 저감이 기대된다. 또한 상추 실생묘의 양적생장 추이와 달리 엽내 색소합성이 관행 무기배양액보다 특정 유기배양액 단용 또는 혼용에 의해 유의하게 증가하는 것으로 보아 작물체내 물질합성량, 유기배양액 사용기간 및 재이용 등 유기배양액의 화학적 특성 변화에 대한 연구가 필요할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

BACKGROUND: Hydroponics is one of the methods for evaluating plant production using the inorganic nutrient solutions, which is applied under the artificial light conditions of plant factory system. However, the application of the conventional inorganic nutrients for hydroponics caused several enviro...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 연구에서는 인공광 식물공장에서 친환경적이며 유기적인 수경재배를 위하여 상이한 광질조건에서 폐기 농업 부산물을 활용하여 제조한 유기 또는 관행의 무기배양액을 시용하고, 화학비료 유래 무기배양액과 농업부산물 유래 유기배양액의 단용 또는 혼용처리가 적치마와 청치마 상추 실생묘의 생장에 미치는 영향을 검토하였다
  • 인공광 식물공장에서는 작물을 생산하기 위하여 일반적으로 화학비료 유래 무기성분을 포함하는 배양액을 시용하여 수경재배한다. 본 연구에서는 광질이 상이한 식물공장에서 관행의 무기배양액 일부 또는 전량을 유기배양액으로 대체할 수 있는 폐기 농업부산물 유래 유기배양액을 시용하여 수경 재배하고 작물의 생장에 미치는 영향을 검토하였다. 청색, 적색 및 백색 LED를 1:2:1의 비율로 혼합한 혼합LED 및 관행의 형광등 조사 조건에서 적치마와 청치마 상추 실생묘를 35 일간 수경재배한 결과, 적치마와 청치마 상추의 생체중 및 전 개엽수 증가는 형광등을 조사한 Y구에서 통계적으로 유의하게 증가하였다.
  • 본 연구에서는 광질이 상이한 인공광 식물공장 조건에서 폐기 농업부산물을 활용하여 작물 생육단계별 유기배양액의 시용 효과, 유기배양액 시용에 의한 수경재배시 문제점이나 유⋅무기 배양액내 무기성분의 경시변화 및 적치마와 청치마의 생장에 미치는 영향을 검토하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
인공광 식물공장의 특징은? 온⋅습도, 광 등 외부 환경요인의 영향을 차단하고 태양광 대신 형광등이나 발광다이오드(Light-Emitting Diode, LED) 와 같은 인공광을 사용하여 작물을 재배하는 인공광 식물공장 은 계절에 상관없이 작물을 연중 안정적이며 계획적으로 생산 할 수 있는 재배시스템이다(Ikeda et al., 1992; Tennessen et al.
인공광 또는 자연광 재배시설에서 사용하는 수경배양액은? 인공광 또는 자연광 이용 재배시설에서 사용하는 수경배양 액은 주로 Yamazaki 잎상추액, Yamazaki 파드득액, 원시배 양액 등 다양한 종류의 무기배양액으로 작물의 종류나 생육에 적합하도록 농도나 성분을 조정하여 공급한다. 작물 수경재배 를 위하여 사용하는 관행의 무기배양액은 다량의 질소성분을 포함하는 화학비료로, 수경재배 작물체내 질산염 축적이나 사 용한 폐배양액에 의한 오염 등의 문제점들이 거론되고 있어 화학비료 사용량을 줄이면서 친환경적으로 작물을 재배할 수 있는 대체 배양액 개발이 필요하다(Khan et al.
인공광 식물공장에서 폐배양액을 재활용한 수경재배가 실용화되지 못한 이유는? 특히 인공광 식물공장에서는 배양액의 구성성분은 물론 무기배양액 제조를 위해 다량의 물이 사용되는데, 인공광 뿐만 아니라 자연광 재배시설에서도 수자원이나 폐자원 재활용을 위하여 폐배양 액 재순환 및 재사용을 위한 기술적 방법 등이 연구되고 있다 (Haddad and Mizyed, 2011; Kozai, 2013; Kumar and Cho, 2014). 그러나 현실적으로 배양액 재사용에 의한 오염 발생이나 영양성분 관리 등의 문제로 인해 폐배양액을 재활용하여 작물을 수경재배하는 사례는 실용화되지 못하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (49)

  1. Abu-Zahra, T. R., & Tahboub, A. A. (2009). Strawberry (Fragaria ${\times}$ ananassa Duch) fruit quality grown under different organic matter sources in a plastic house at Humrat Al-Sahen. Acta Horticulturae, 807, 353-358. 

  2. Amalfitano, C. A., Del Vacchio, L. D. V., Somma, S., Cuciniello, A. C., & Caruso, G. (2017). Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of 'Friariello' pepper grown in hydroponics. Horticultural Science, 44(2), 91-98. 

  3. Andersson, G. K., Rundlof, M., & Smith, H. G. (2012). Organic farming improves pollination success in strawberries. PLoS One, 7(2), e31599. 

  4. Atkin, K., & Nichols, M. A. (2003). Organic hydroponics. Acta Horticulturae, 648, 121-127, 10.17660/ActaHortic.2004.648.14. 

  5. Bojarezuk, K. (2004). Effect of aluminium on the development of poplar (Populus tremula L. ${\times}$ P. alba L.) in vitro and in vivo. Polish Journal of Environmental Studies, 13(3), 261-266. 

  6. Cardoso, P. C., Tomazini, A. P. B., Stringheta, P. C., Ribeiro, S. M., & Pinheiro-Sant'Ana, H. M. (2011). Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food chemistry, 126(2), 411-416. 

  7. Caruso, G., Conti, S., & La Rocca, G. (2011). Influence of crop cycle and nitrogen fertilizer form on yield and nitrate content in different species of vegetables. Advances in horticultural science, 25(2), 81-89. 

  8. Cha, M. K., Kim, J. S., & Cho, Y. Y. (2012). Growth response of lettuce to various levels of EC and light intensity in plant factory. Journal of Bio-Environment Control, 21(4), 305-311. 

  9. Chen, X. L., Guo, W. Z., Xue, X. Z., Wang, L. C., & Qiao, X. J. (2014). Growth and quality responses of 'Green Oak Leaf'lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and lightemitting diode (LED). Scientia Horticulturae, 172, 168-175. 

  10. Cho, Y. Y., Choi, K. Y., Lee, Y. B., & Son, J. E. (2012). Growth characteristics of sowthistle (Ixeris dentata Nakai) under different levels of light intensity, electrical conductivity of nutrient solution, and planting density in a plant factory. Horticulture, Environment, and Biotechnology, 53(5), 368-372. 

  11. Conti, S., Villari, G., Faugno, S., Melchionna, G., Somma, S., & Caruso, G. (2014). Effects of organic vs. conventional farming system on yield and quality of strawberry grown as an annual or biennial crop in southern Italy. Scientia Horticulturae, 180, 63-71. 

  12. Dasgan, H. Y., & Bozkoylu, A. (2007). Comparison of organic and synthetic-inorganic nutrition of soilless grown summer squash. Acta Horticulturae, 747, 523-528, https://doi.org/10.17660/ActaHortic.2007.747.68 

  13. Fan, X. X., Xu, Z. G., Liu, X. Y., Tang, C. M., Wang, L. W., & Han, X. L. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturae, 153, 50-55. 

  14. Fanasca, S., Colla, G., Maiani, G., Venneria, E., Rouphael, Y., Azzini, E., & Saccardo, F. (2006). Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. Journal of agricultural and food chemistry, 54(12), 4319-4325. 

  15. Franklin, K. A., Larner, V. S., & Whitelam, G. C. (2005). The signal transducing photoreceptors of plants. The International Journal of Developmental Biology, 49, 653-664. 

  16. Fu, Y., Li, H., Yu, J., Liu, H., Cao, Z., Manukovsky, N. S., & Liu, H. (2017). Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Scientia horticulturae, 214, 51-57. 

  17. Haddad, M., & Mizyed, N. (2011). Evaluation of various hydroponic techniques as decentralized wastewater treatment and reuse systems. International Journal of Environmental Studies, 68(4), 461-476. 

  18. Heo, J. W., Kim, H. H., Lee, K. J., Yoon, J. B., Lee, J. K., Huh, Y. S., & Lee, K. Y. (2015). Effect of supplementary radiation on growth of greenhouse-grown kales. Korean Journal of Environmental Agriculture, 34(1), 38-45. 

  19. Heo, J. W., Lee, J. S., Lee, G. I., & Kim, H. H. (2017). Growth of kale seedlings affected by the control of light quality and intensity under smart greenhouse conditions with artificial lights. Korean Journal of Environmental Agriculture, 36(3), 193-200. 

  20. Heo, J. W., Park, K. H., Lee, J. S., Hong, S. G., Lee, G. I., & Baek, J. H. (2018). Design of cloud-based data analysis system for culture medium management in smart greenhouse. Korean Journal of Environmental Agriculture, 37(4), 251-259. 

  21. Hirai, T., Amaki, W., & Watanabe, H. (2006). Effects of monochromatic light irradiation by LED on the internodal stem elongation of seedlings in eggplant, leaf lettuce and sunflower. Journal of Society of High Technology in Agriculture (Japan), 18(2), 160-166. 

  22. Ikeda, A., Tanimura, Y., Ezaki, K., Kawai, Y., Nakayama, S., Iwao, K., & Kageyama, H. (1992). Environmental control and operation monitoring in a plant factory using artificial light. Acta Horticulturae, 304, 151-158, https://doi.org/10.17660/ActaHortic.1992.304.16. 

  23. Inden, H., Akamastu, Y., Mastuda, T., & Yamamoto, M. (2011). Low cost plant factory using hybrid electrode fluorescent lamp (HEFL). Acta Horticulturae, 907, 157-160, https://doi.org/10.17660/ActaHortic.2011.907.21. 

  24. Kang, J. H., KrishnaKumar, S., Atulba, S. L. S., Jeong, B. R., & Hwang, S. J. (2013). Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Horticulture, Environment, and Biotechnology, 54(6), 501-509. 

  25. Kang, W. H., Park, J. S., Park, K. S., & Son, J. E. (2016). Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). Horticulture, Environment, and Biotechnology, 57(6), 573-579. 

  26. Khan, K., Yan, Z., & He, D. (2018b). Impact of light intensity and nitrogen of nutrient solutions on nitrate content in three lettuce cultivars prior to harvest. Journal of Agricultural Science, 10(6), 99-109. 

  27. Khan, K., Yan, Z., Abbas, A., & He, D. (2018a). Impact factors influencing the nitrate accumulation of leafy vegetables in plant factory. International Journal of Horticultural Science & Ornamental Plants, 4(1), 64-73. 

  28. Khattak, A. M., & Pearson, S. (2005). Light quality and temperature effects on antirrhinum growth and development. Journal of Zhejiang University Science, B, 6(2), 119-124. 

  29. Kim, D. G., Lee, C., Yun, Y. S., Hong, C. H., & Choi, Y. E. (2019). Recycling waste nutrient solution originating from the plant factory with the cultivation of newly isolated Acutodesmus species. Journal of Biotechnology, 289, 15-25. 

  30. Kobayashi, K., Amore, T., & Lazaro, M. (2013). Light-Emitting Diodes (LEDs) for miniature hydroponic lettuce. Optics and Photonics Journal, 3(01), 74-77. 

  31. Kozai, T. (2013). Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proceeding of the Japan Academy Series B, 89(10), 447-461. 

  32. Kumar, R. R., & Cho, J. Y. (2014). Reuse of hydroponic waste solution. Environmental Science and Pollution Research, 21(16), 9569-9577. 

  33. Lee, G. J., Heo, J. W., Jung, C. R., Kim, H. H., Jo, J. S., Lee, J. G., Lee, G. J., Nam, S. Y., & Hong, E. Y. (2016). Effects of artificial light sources on growth and glucosinolate contents of hydroponically grown kale in plant factory. Protected Horticulture and Plant Factory, 25(2), 77-82. 

  34. Lee, S. G., Choi, C. S., Lee, J. G., Jang, Y. A., Nam, C. W., Yeo, K. H., Lee, H. J., & Um, Y. C. (2012). Effects of different EC in nutrient solution on growth and quality of red mustard and Pak-Choi in plant factory. Journal of Bio-Environment Control. 21(4), 322-326. 

  35. Lopez, A., Fenoll, J., Hellin, P., & Flores, P. (2013). Physical characteristics and mineral composition of two pepper cultivars under organic, conventional and soilless cultivation. Scientia Horticulturae, 150, 259-266. 

  36. Maneejantra, N., Tsukagoshi, S., Lu, N., Supoaibulwatana, K., Takagaki, M., & Yamori, W. (2016). A quantitative analysis of nutrient requirements for hydroponics Spinach (Spinacia oleracea L.) production under artificial light in a plant factory. Journal of Fertilizers & Pesticides, 7(2), 170-174. 

  37. Martinez-Alcantara, B., Martinez-Cuenca, M., Bermejo, A., Legaz., F., & Quinones, A. (2016). Liquid organic fertilizers for sustainable agriculture: Nutrient uptake of organic versus mineral fertilizers in Citrus trees, PLoS One, 11(10), e0161619, 1-20. 

  38. Morrow, R. C. (2008). LED lighting in horticulture. HortScience, 43(7), 1947-1950. 

  39. Phibunwatthanawong, T., & Riddech, N. (2019). Liquid organic fertilizer production for growing vegetables under hydroponic condition. International Journal of Recycling of Organic Waste in Agriculture, 1-12. 

  40. Promratrak, L. (2017). The effect of using LED lighting in the growth of crops hydroponics. International Journal of Smart Grid and Clean Energy, 6(2), 133-140. 

  41. Saito, Y., Shimizu, H., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2010). The effect of light quality on growth of lettuce, IFAC Proceedings Volumes, 43(26), 294-298. 

  42. Shimizu, H., Saito, Y., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2011). Light environment optimization for lettuce growth in plant factory. IFAC Proceedings Volumes, 44(1), 605-609. 

  43. Shin, K. S., Murthy, H. N., Heo, J. W., Hahn, E. J., & Paek, K. Y. (2008). The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum, 30(3), 339-343. 

  44. Shoji, K., Goto, E., Hashida, S., Goto, F., & Yoshihara, T. (2011). Effect of light quality on the polyphenol content and antioxidant activity of sweet basil (Ocimum basilicum L.). Acta Horticulturae, 907, 95-99, https://doi.org/10.17660/ActaHortic.2011.907.10. 

  45. Suarez, M. H., Rodriguez, E. R., & Romero, C. D. (2007). Mineral and trace element concentrations in cultivars of tomatoes. Food Chemistry, 104(2), 489-499. 

  46. Tennessen, D. J., Singsaas, E. L., & Sharkey, T. D. (1994). Light-emitting diodes as a light source for photosynthesis research. Photosynthesis research, 39(1), 85-92. 

  47. Yoon, C. G., & Choi, H. K. (2011). A study on the various light source radiation conditions and use of LED illumination for plant factory. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 25(10), 14-22. 

  48. Zhang, X., He, D., Niu, G., Yan, Z., & Song, J. (2018). Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. International Journal Agricultural & Biological Engineering, 11(2), 33-40. 

  49. Zhang, Y., Kiriiwa, Y., & Nukaya, A. (2015). Influence of nutrient concentration and composition on the growth, uptake patterns of nutrient elements and fruit coloring disorder for tomatoes grown in extremely low-volume substrate. The Horticulture Journal, 84(1), 37-45. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로