$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Numerical studies on non-linearity of added resistance and ship motions of KVLCC2 in short and long waves 원문보기

International journal of naval architecture and ocean engineering, v.11 no.1, 2019년, pp.143 - 153  

Hizir, Olgun (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde) ,  Kim, Mingyu (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde) ,  Turan, Osman (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde) ,  Day, Alexander (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde) ,  Incecik, Atilla (Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde) ,  Lee, Yongwon (Global Technology Centre, Lloyd's Register)

Abstract AI-Helper 아이콘AI-Helper

In this study, numerical simulations for the prediction of added resistance for KVLCC2 with varying wave steepness are performed using a Computational Fluid Dynamics (CFD) method and a 3-D linear potential method, and then the non-linearities of added resistance and ship motions are investigated in ...

주제어

참고문헌 (45)

  1. Blok, J.J., 1993. The Resistance Increase of a Ship in Waves. Delft University of Technology, TU Delft. 

  2. Bockmann, A., Pakozdi, C., Kristiansen, T., Jang, H., Kim, J., 2014. An experimental and computational development of a benchmark solution for the validation of numerical wave tanks. In: 33rd International Conference on Ocean, Offshore and Arctic Engineering. ASME. 

  3. Deng, G., Leroyer, A., Guilmineau, E., Queutey, P., Visonneau, M., Wackers, J., 2010. Verification and validation for unsteady computation. In: Proceedings of Gothenburg 2010: a Workshop on CFD in Ship Hydrodynamics. Gothenburg, Sweden). 

  4. El Moctar, B., Kaufmann, J., Ley, J., Oberhagemann, J., Shigunov, V., Zorn, T., 2010. Prediction of ship resistance and ship motions using RANSE. In: Proceedings of the Workshop on Numer, p. l. Ship Hydrodyn., Gothenburg. 

  5. Faltinsen, O.M., Minsaas, K.J., Liapis, N., Skjordal, S.O., 1980. Prediction of resistance and propulsion of a ship in a seaway. In: Proceeding of 13th Symposium on Naval Hydrodynamics, pp. 505-529. Tokyo. 

  6. Fujii, H., Takahashi, T., 1975. Experimental study on the resistance increase of a ship in regular oblique waves. Proceedings of the 14th ITTC 4, 351-360. 

  7. Gerritsma, J., Beukelman, W., 1972. Analysis of the resistance increase in waves of a fast cargo ship. Int. Shipbuild. Prog. 19 (217). 

  8. Gothenburg, 2010. A Workshop on Numerical Ship Hydrodynamics. Denmark. 

  9. Guo, B., Steen, S., Deng, G., 2012. Seakeeping prediction of KVLCC2 in head waves with RANS. Appl. Ocean Res. 35, 56-67. 

  10. Havelock, T.H., 1937. The resistance of a ship among waves. In: Proceedings of the Royal Society of London. Series a, Mathematical and Physical Sciences, pp. 299-308. 

  11. Hizir, O.G., 2015. Three dimensional time domain simulation of ship motions and loads in large amplitude waves. PhD Thesis. Department of Naval Architecture, Ocean and Marine Engineering, pp. 1-240 (University of Strathclyde, Glasgow, UK). 

  12. IMO, 2012. Interim Guidelines for the Calculation of the Coefficient Fw for Decrease in Ship Speed in a Representative Sea Condition for Trial Use. International Maritime Organisation (IMO), London. 

  13. ITTC, 2014. The Specialist Committee on Seakeeping-final Report and Recommendations to the 27th ITTC. International Towing Tank Conference, Copenhagen. 

  14. Joncquez, S.A., 2009. Second-order Forces and Moments Acting on Ships in Waves. Technical University of Denmark, Copenhagen, Denmark. 

  15. Kim, B., Shin, Y.S., 2007. Steady flow approximations in three-dimensional ship motion calculation. J. Ship Res. 51 (3), 229-249. 

  16. Kim, H.T., Kim, J.J., Choi, N.Y., Lee, G.H., 2014. A study on the Operating Trim, Shallow Water and Wave Effect. SNAK, pp. 631-637. 

  17. Kim, K.H., Kim, Y., Kim, Y., 2007. WISH JIP Project Report and Manual. Marine Hydrodynamic Laboratory. Seoul National University. 

  18. Kim, M., Hizir, O., Turan, O., Day, S., Incecik, A., 2017a. Estimation of added resistance and ship speed loss in a seaway. Ocean Eng. 141, 465-476. 

  19. Kim, M., Hizir, O., Turan, O., Incecik, A., 2017b. Numerical studies on added resistance and motions of KVLCC2 in head seas for various ship speeds. Ocean Eng. 

  20. Kim, M., Park, D.W., 2015. A study on the green ship design for ultra large container ship. J. Kor. Soc. Mar. Enviro. Safety 21 (5), 558-570. 

  21. Kim, Y.C., Kim, K.S., Kim, J., Kim, Y.S., Van, S.H., Jang, Y.H., 2015. Calculation of added resistance in waves for KVLCC2 and its modified hull form using RANS-based method, the 25th International Offshore and Polar Engineering Conference. Int. Soc. Offshore and Polar Eng 924-930. Hawaii, USA. 

  22. Kwon, Y.J., 2008. Speed loss due to added resistance in wind and waves. Nav. Archit. 14-16. 

  23. Larsson, L., Stern, F., Visonneau, M., 2010. In: Technology, C.U.o. (Ed.), Proceedings Gothenburg 2010 aWorkshop on Numerical Ship Hydrodynamics (Gothenburg, Sweden). 

  24. Lee, C.H., Sclavounos, P.D., 1989. Removing the irregular frequencies from integral equations in wave-body interactions. J. Fluid Mech. 207, 393-418. 

  25. Lee, J.H., Seo, M.G., Park, D.M., Yang, K.K., Kim, K.H., Kim, Y., 2013. Study on the effects of hull form on added resistance. In: The 12th International Symposium on Practical Design of Ships and Other Floating Structures, Changwon, Korea, pp. 329-337. 

  26. Ley, J., Sigmund, S., el Moctar, O., 2014. Numerical prediction of the added resistance of ships in waves. In: 33rd International Conference on Ocean, Offshore and Arctic Engineering. ASME. 

  27. Liu, S., Papanikolaou, A., 2016. Prediction of the Added Resistance of Ships in Oblique Seas. ISOPE. 

  28. Liu, S., Papanikolaou, A., Zaraphonitis, G., 2011. Prediction of added resistance of ships in waves. Ocean Eng. 38 (4), 641-650. 

  29. Liu, S., Papanikolaou, A., Zaraphonitis, G., 2015. Practical approach to the added resistance of a ship in short waves, the twenty-fifth international offshore and polar engineering conference. Int. Soc. Offshore and Polar Eng 11-18. 

  30. Mauro, H., 1960. The drift of a body floating on waves. J. Ship Res. 4, 1-5. 

  31. Park, D.-M., Kim, Y., Seo, M.-G., Lee, J., 2016. Study on added resistance of a tanker in head waves at different drafts. Ocean Eng. 111, 569-581. 

  32. Park, D.M., Seo, M.G., Lee, J., Yang, K.Y., Kim, Y., 2014. Systematic experimental and numerical analyses on added resistance in waves. J. Soc. Naval of Arch. Korea 51 (6), 459-479. 

  33. Prpic-Orsic, J., Faltinsen, O.M., 2012. Estimation of ship speed loss and associated CO2 emissions in a seaway. Ocean Eng. 44, 1-10. 

  34. Sadat-Hosseini, H., Carrica, P., Kim, H., Toda, Y., Stern, F., 2010. URANS simulation and validation of added resistance and motions of the KVLCC2 crude Carrier with fixed and free surge conditions, Gothenburg 2010. AWorkshop on CFD in Ship Hydrodynamics 517-522. 

  35. Sadat-Hosseini, H., Wu, P., Carrica, P., Kim, H., Toda, Y., Stern, F., 2013. CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean Eng. 59, 240-273. 

  36. Salvesen, N., Tuck, E.O., Faltinsen, O.M., 1970. Ship Motions and Sea Loads SNAME, vol. 104, pp. 119-137. 

  37. Seo, M.-G., Kim, K.-H., Park, D.-M., Kim, Y., 2013. Comparative study on added resistance for different hull forms by using weakly-nonlinear seakeeping formulations. J. Society of Naval Arch. Korea 50 (1), 49-58. 

  38. Seo, M.-G., Yang, K.-K., Park, D.-M., Kim, Y., 2014. Numerical analysis of added resistance on ships in short waves. Ocean Eng. 87, 97-110. 

  39. Shen, Z., Wan, D., 2013. RANS computations of added resistance and motions of a ship in head waves. Int. J. Offshore Polar Eng. 23 (04), 264-271. 

  40. SHOPERA, 2016. Energy Efficient Safe Ship Operation EU FP-7 Project. 

  41. SIMMAN, 2014. Workshop on Verification and Validation of Ship Manoeuvring Simulation Methods. Denmark. 

  42. Stern, F., Xing, T., Yarbrough, D.B., Rothmayer, A., 2006. Hands-on CFD educational interface for engineering courses and laboratories. J. Eng. Educ. 95 (1), 63. 

  43. Tezdogan, T., Demirel, Y.K., Kellett, P., Khorasanchi, M., Incecik, A., Turan, O., 2015. Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming. Ocean Eng. 97, 186-206. 

  44. U.N, 2015. In: Nations, U. (Ed.), United Nations Framework Convention on Climate Change. Paris. 

  45. Van't Veer, A.P., 2009. PRECAL v6.5 Theory Manual. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로