$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

최근 부동산 시장에 대한 관심이 높다. 과거 주거환경으로만 여겨지던 부동산은 끊임없는 수요 증가로 안정적인 투자 대상으로 인식되고 있기 때문이다. 특히 국내 시장의 경우 인구 수의 감소에도 불구하고 1인 가구의 증가 및 대도시로의 인구 유입이 가속화되며 수도권 중심으로 부동산 가격이 급격히 상승하고 현상이 나타나고 있다. 이에 미래 부동산 시장의 전망을 정확히 예측하는 것은 개인의 자산 관리 뿐 아니라 정부 정책 수립 등 사회 전반에 걸쳐 매우 중요한 사안이라고 할 수 있다. 본 논문에서는 머신러닝 기법을 활용해 과거 부동산 매매 데이터를 학습해 미래 부동산 시세를 예측하는 프로그램을 개발하였다. 한국감정원과 국토교통부에서 제공하는 대한민국 부동산 매매 시세 데이터를 활용하였으며 지역별로 2022년도 평균 매매가 예측치를 제시한다. 개발된 프로그램은 오픈소스 형태로 공개하여 다양한 형태로 활용될 수 있도록 하였다.

Abstract

Recently, the real estate is of high interest. This is because real estate, which was considered only a residential environment in the past, is recognized as a stable investment target due to the ever-growing demand on it. In particular, in the case of the domestic market, despite the decrease in the number of people, the number of single-person households and the influx of people to large cities are accelerating, and real estate prices are rising sharply around the metropolitan area. Therefore, accurately predicting the prospects of the future real estate market becomes a very important issue not only for individual asset management but also for government policy establishment. In this paper, we developed a program to predict future real estate market prices by learning past real estate sales data using machine learning techniques. The data on the market price of real estate provided by the Korea Appraisal Board and the Ministry of Land, Infrastructure and Transport were used, and the average sales price forecast for 2022 by region is presented. The developed program is publicly available so that it could be used in various forms.

참고문헌 (0)

  1. 이 논문의 참고문헌 없음

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

DOI 인용 스타일