$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

미세먼지의 질병에 미치는 유해성
Harmfulness of Particulate Matter in Disease Progression 원문보기

생명과학회지 = Journal of life science, v.30 no.2, 2020년, pp.191 - 201  

최종규 (인천대학교 생명공학부 나노바이오 전공) ,  최인순 (신라대학교 생명과학과) ,  조광근 (경남과기대 동물소재공학과) ,  이승호 (인천대학교 생명공학부 나노바이오 전공)

초록
AI-Helper 아이콘AI-Helper

사회의 급속한 발전과 함께 수반되는 환경오염이 인간의 건강을 위협하는 커다란 위험인자로 인식되기 시작하면서 공기오염을 억제하기 위한 노력과 공기오염에 의해 유발되는 여러 질환을 억제 및 치료하기 위한 연구개발이 급속히 증가하고 있다. 인간 건강에 나쁜 영향을 주는 공기오염의 주된 원인중의 하나인 미세먼지는 (particulate matter, PM) 크기에 따라 일반미세먼지와(PM10) 초미세먼지(PM2.5)로 나누어 질 수 있으며, 호흡기, 소화기, 및 피부에 흡수 및 부착되어 이상 면역반응을 유발하여 만성호흡기질환, 당뇨병 및 면역질환등을 촉진하는 것으로 알려져 있다. 그동안 인류의 건강을 위해 미세먼지의 발생을 억제하기 위한 범 국가적 노력과 함께 미세먼지의 유해성을 증명하기 위한 많은 연구가 진행되어 왔다. 본 총설에서는 여러 인체질환에 있어서 미세먼지가 미치는 유해성을 중심으로 소개하고 미세먼지의 생물학적 위험성을 평가하는 세포 및 동물실험법에 대해 요약하였다.

Abstract AI-Helper 아이콘AI-Helper

As society develops rapidly, environmental pollution is becoming a greater risk factor threatening human health. One of the major causes of air pollution that affects human health is particulate matter (PM), which contains a heterogeneous mixture of different particle sizes and chemical compositions...

주제어

표/그림 (5)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 총설에서는 여러 연구를 통해 밝혀진 미세먼지의 유해성과 질환촉진 작용기작에 대해서 설명하고 미세먼지의 유해성을 검증하기 위한 생물학적 시험법에 대해 정리하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
초미세먼지의 주성분은? 5)로 나누어 질 수 있다[1]. 미세먼지에는 다양한 종류의 성분들이 포함되어 있는데 일반 미세먼지에는 먼지부유물, 흙먼지, 곰팡이 포자, 식물단편 및 여러 금속 산화물들(metal oxides)이 주성분으로 발원지로부터 약 10 km 정도 이동이 가능한 것으로 알려져 있고, 초미세먼지의 경우 황산염, 질산염, 암모늄, 수소이온, 방향족 탄화수소, 카드뮴, 구리, 아연 등이 주성분으로 발원지로부터 최대 1,000km까지 이동할 수 있는 것으로 보고되고 있다[59].
미세먼지에 장기간 노출될 경우 발생 가능한 호흡기 질환의 종류는? 미세먼지에 장기간 노출은 천식(asthma) [61], 만성 폐쇄성 폐질환(chronic obstructive pulmonary disease, COPD) [33], 폐암(lung cancer) [4]을 증가시킬 수 있으며, 초미세먼지의 경우 호흡기관을 관통하여 혈류를 통해 다른 조직으로 이동할 수 있어 심혈관 질환(cardiovascular disease) [43]을 증가시킬수 있는 위험성을 보유하고 있다고 알려져 있다. 미세먼지의 위험성이 알려지기 시작하면서 미세먼지의 안전성에 대한 국가기준이 점차적으로 강화되고 있으며, 미세먼지의 발생을 근원적으로 저감하기 위한 국가적인 노력과 함께 다양한 질환 동물모델을 이용하여 미세먼지와 여러 질환의 연관성을 규명하는 연구가 급속도로 증가하고 있는 실정이다.
미세먼지란? 사회의 발전과 더불어 증가하는 환경오염은 인류의 건강을 위협하는 수준에 이르고 있다. 실제로 년 2백만명 이상이 공기 오염에 의한 호흡기 질환으로 사망하고 있는 것으로 보고되고 있으며[14], 여러 가지 공기 오염원 중에 미세먼지(particulate matter, PM)는 공기 오염의 주요 오염원 중 하나로 입자의 크기에 따라 직경이 10μm 이하의 것을 일반 미세먼지(PM10), 2.5 μm 이하의 것을 초미세먼지(PM2.
질의응답 정보가 도움이 되었나요?

참고문헌 (78)

  1. Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M. and Armstrong, B. 2010. Urban ambient particle metrics and health: A time series analysis. Epidemiology 21, 501-511. 

  2. Aztatzi-Aguilar, O. G., Uribe-Ramirez, M., Narvaez-Morales, J., De Vizcaya-Ruiz, A. and Barbier, O. 2016. Early kidney damage induced by subchronic exposure to PM2.5 in rats. Part. Fibre. Toxicol. 13, 68. 

  3. Bao, Z. J., Fan, Y. M., Cui, Y. F., Sheng, Y. F. and Zhu, M. 2017. Effect of $PM_{2.5}$ mediated oxidative stress on the innate immune cellular response of Der p1 treated human bronchial epithelial cells. Eur. Rev. Med. Pharmacol. Sci. 21, 2907-2912. 

  4. Beelen, R., Hoek, G., van den Brandt, P. A., Goldbohm, R. A., Fischer, P., Schouten, L. J., Armstrong, B. and Brunekreef, B. 2008. Long-term exposure to traffic-related air pollution and lung cancer risk. Epidemiology 19, 702-710. 

  5. Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S. B., Krzyzanowski, M., Martin, R. V., Van Dingenen, R., van Donkelaar, A. and Thurston, G. D. 2012. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol. 46, 652-660. 

  6. Brook, R. D., Xu, X., Bard, R. L., Dvonch, J. T., Morishita, M., Kaciroti, N., Sun, Q., Harkema, J. and Rajagopalan, S. 2013. Reduced metabolic insulin sensitivity following subacute exposures to low levels of ambient fine particulate matter air pollution. Sci. Total. Environ. 448, 66-71. 

  7. Chen, L. C., Hwang, J. S., Lall, R., Thurston, G. and Lippmann, M. 2010. Alteration of cardiac function in ApoE-/- mice by subchronic urban and regional inhalation exposure to concentrated ambient PM2.5. Inhal. Toxicol. 22, 580-592. 

  8. Cho, C. C., Hsieh, W. Y., Tsai, C. H., Chen, C. Y., Chang, H. F. and Lin, C. S. 2018. In vitro and in vivo experimental studies of PM2.5 on disease progression. Int. J. Environ. Res. Public. Health 15, 1380. 

  9. De Brouwere, K., Buekers, J., Cornelis, C., Schlekat, C. E. and Oller, A. R. 2012. Assessment of indirect human exposure to environmental sources of nickel: oral exposure and risk characterization for systemic effects. Sci. Total. Environ. 419, 25-36. 

  10. Deng, X., Rui, W., Zhang, F. and Ding, W. 2013. PM2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol. Toxicol. 29, 143-157. 

  11. Duan, Z., Du, F. Y., Yuan, Y. D., Zhang, Y. P., Yang, H. S. and Pan, W. S. 2013. Effects of PM2.5 exposure on Klebsiella pneumoniae clearance in the lungs of rats. Zhonghua. Jie. He. He. Hu. Xi. Za. Zhi. 36, 836-840. 

  12. Dysart, M. M., Galvis, B. R., Russell, A. G. and Barker, T. H. 2014. Environmental particulate (PM2.5) augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta. PLoS One 9, 106821. 

  13. Falcon-Rodriguez, C. I., De Vizcaya-Ruiz, A., Rosas-Perez, I. A., Osornio-Vargas, A. R. and Segura-Medina, P. 2017. Inhalation of concentrated PM2.5 from Mexico City acts as an adjuvant in a guinea pig model of allergic asthma. Environ. Pollut. 228, 474-483. 

  14. Global health observatory data repository, urban outdoor air pollution: burden of disease by country. World Health Organization, Geneva 2008, http://apps.who.int/gho/data/node.main.285. 

  15. Goettems-Fiorin, P. B., Grochanke, B. S., Baldissera, F. G., Dos Santos, A. B., Homem de Bittencourt, P. I. Jr., Ludwig, M. S., Rhoden, C. R. and Heck, T. G. 2016. Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: Stress response and extracellular to intracellular HSP70 ratio analysis. J. Physiol. Biochem. 72, 643-656. 

  16. Guaita, R., Pichiule, M., Mate, T., Linares, C. and Diaz, J. 2011. Short-term impact of particulate matter (PM2.5) on respiratory mortality in Madrid. Int. J. Environ. Health. Res. 21, 260-274. 

  17. Haberzettl, P., McCracken, J. P., Bhatnagar, A. and Conklin, D. J. 2016. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis. Am. J. Physiol. Heart. Circ. Physiol. 310, H1423-H1438. 

  18. Haberzettl, P., O'Toole, T. E., Bhatnagar, A. and Conklin, D. J. 2016. Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress. Environ. Health. Perspect. 124, 1830-1839. 

  19. He, M., Ichinose, T., Kobayashi, M., Arashidani, K., Yoshida, S., Nishikawa, M., Takano, H., Sun, G. and Shibamoto, T. 2016. Differences in allergic inflammatory responses between urban PM2.5 and fine particle derived from desert-dust in murine lungs. Toxicol. Appl. Pharmacol. 297, 41-55. 

  20. Helms, M. N., Torres-Gonzalez, E., Goodson, P. and Rojas, M. 2010. Direct tracheal instillation of solutes into mouse lung. J. Vis. Exp. 42, 1941. 

  21. Hsieh, Y. L., Tsai, S. S. and Yang, C. Y. 2013. Fine particulate air pollution and hospital admissions for congestive heart failure: A case-crossover study in Taipei. Inhal. Toxicol. 25, 455-460. 

  22. Huang, N. H., Wang, Q. and Xu, D. Q. 2008. Effect of PM2.5 on cytokine production in female wistar rats. Biomed. Environ. Sci. 21, 63-8. 

  23. Huang, Q., Zhang, J., Peng, S., Tian, M., Chen, J. and Shen, H. 2014. Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): a proteomic study. J. Appl. Toxicol. 34, 675-87. 

  24. https://doi.org/10.3390/ijms20204992. Int. J. Mol. Sci. 2019, 4992. 

  25. Jalava, P. I., Hirvonen, M. R., Sillanpaa, M., Pennanen, A. S., Happo, M. S., Hillamo, R., Cassee, F. R., Gerlofs-Nijland, M., Borm, P. J., Schins, R. P., Janssen, N. A. and Salonen, R. O. 2009. Associations of urban air particulate composition with inflammatory and cytotoxic responses in RAW 264.7 cell line. Inhal. Toxicol. 21, 994-1006. 

  26. Kish, L., Hotte, N., Kaplan, G. G., Vincent, R., Tso, R., Ganzle, M., Rioux, K. P., Thiesen, A., Barkema, H. W., Wine, E. and Madsen, K. L. 2013. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One 8, 62220. 

  27. Korean ministry of Environment. 2018-46. 

  28. Kublik, H. and Vidgren, M. T. 1998. Nasal delivery systems and their effect on deposition and absorption. Adv. Drug. Deliv. Rev. 29, 157-177. 

  29. Leblanc, J. C., Guerin, T., Noel, L., Calamassi-Tran, G., Volatier, J. L. and Verger, P. 2005. Dietary exposure estimates of 18 elements from the 1st French total diet study. Food. Addit. Contam. 22, 624-641. 

  30. Li, R., Kou, X., Geng, H., Xie, J., Tian, J., Cai, Z. and Dong, C. 2015. Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats. J. Hazard. Mater. 287, 392-401 

  31. Li, R., Kou, X,. Geng, H., Xie, J., Yang, Z., Zhang, Y., Cai, Z. and Dong, C. 2015. Effect of ambient PM2.5 on lung mitochondrial damage and fusion/fission gene expression in rats. Chem. Res. Toxicol. 28, 408-418. 

  32. Lin, C. I., Tsai, C. H., Sun, Y. L., Hsieh, W. Y., Lin, Y. C., Chen, C. Y. and Lin, C. S. 2018. Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int. J. Biol. Sci. 14, 253-265. 

  33. Lindgren, A., Stroh, E., Nihlen, U., Montnemery, P., Axmon, A. and Jakobsson, K. 2009. Traffic exposure associated with allergic asthma and allergic rhinitis in adults. A cross-sectional study in southern Sweden. Int. J. Health. Geogr. 8, 25. 

  34. Liu, C., Xu, X., Bai, Y., Wang, T. Y., Rao, X., Wang, A., Sun, L., Ying, Z., Gushchina, L., Maiseyeu, A., Morishita, M., Sun, Q., Harkema, J. R. and Rajagopalan, S. 2014. Air pollution-mediated susceptibility to inflammation and insulin resistance: Influence of CCR2 pathways in mice. Environ. Health Perspect. 122, 17-26. 

  35. Liu, Y., Feng, G. Z., Du, Q., Jin, X. X. and Du, X. R. 2017. Fine particulate matter aggravates allergic airway inflammation through thymic stromal lymphopoietin activation in mice. Mol. Med. Rep. 16, 4201-4207. 

  36. Longhin, E., Holme, J. A., Gutzkow, K. B., Arlt, V. M., Kucab, J. E., Camatini, M. and Gualtieri, M. 2013. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part. Fibre. Toxicol. 10, 63. 

  37. Lu, X., Ye, Z., Zheng, S., Ren, H., Zeng, J., Wang, X., Jose, P. A., Chen, K. and Zeng, C. 2018. Long-term exposure of fine particulate matter causes hypertension by impaired renal D1 receptor-mediated sodium excretion via upregulation of G-protein-coupled receptor kinase type 4 expression in Sprague-Dawley rats. J. Am. Heart. Assoc. 7, 007185. 

  38. Luo, B., Shi, H., Wang, L., Shi, Y., Wang, C., Yang, J., Wan, Y. and Niu, J. 2014. Rat lung response to PM2.5 exposure under different cold stresses. Int. J. Environ. Res. Public Health 11, 12915-12926. 

  39. Madrigano, J., Kloog, I., Goldberg, R., Coull, B. A., Mittleman, M. A. and Schwartz, J. 2013. Long-term exposure to $PM_{2.5}$ and incidence of acute myocardial infarction. Environ. Health. Perspect. 121, 192-196. 

  40. McCormack, M. C., Breysse, P. N., Matsui, E. C., Hansel, N. N., Peng, R. D., Curtin-Brosnan, J., Williams, D. L., Wills-Karp, M., Diette, G. B. and Center for Childhood Asthma in the Urban Environment. 2011. Indoor particulate matter increases asthma morbidity in children with nonatopic and atopic asthma. Ann. Allergy. Asthma. Immunol. 106, 308-315. 

  41. Meister, K., Johansson, C. and Forsberg, B. 2012. Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ. Health Perspect. 120, 431-436. 

  42. Mendez, R., Zheng, Z., Fan, Z., Rajagopalan, S., Sun, Q. and Zhang, K. 2013. Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue. Am. J. Transl. Res. 5, 224-234. 

  43. Mills, N. L., Donaldson, K., Hadoke, P. W., Boon, N. A., MacNee, W., Cassee, F. R., Sandstrom, T., Blomberg, A. and Newby, D. E. 2009. Adverse cardiovascular effects of air pollution. Nat. Clin. Pract. Cardiovasc. Med. 6, 36-44. 

  44. Montiel-Davalos, A., Alfaro-Moreno, E. and Lopez-Marure, R. 2007. $PM_{2.5}$ and $PM_{10}$ induce the expression of adhesion molecules and the adhesion of monocytic cells to human umbilical vein endothelial cells. Inhal. Toxicol. 19, 91-98. 

  45. OECD http://stats.oecd.org/, air quality and health 2018. 11. 

  46. Ogino, K., Zhang, R., Takahashi, H., Takemoto, K., Kubo, M., Murakami, I., Wang, D. H. and Fujikura, Y. 2014. Allergic airway inflammation by nasal inoculation of particulate matter ( $PM_{2.5}$ ) in NC/Nga mice. PLoS One 9, 92710. 

  47. Oh, S. M., Kim, H. R., Park, Y. J., Lee, S. Y. and Chung, K. H. 2011. Organic extracts of urban air pollution particulate matter ( $PM_{2.5}$ )-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells). Mutat. Res. 723, 142-151. 

  48. Ostro, B., Tobias, A., Querol, X., Alastuey, A., Amato, F., Pey, J., Perez, N. and Sunyer, J. 2011. The effects of particulate matter sources on daily mortality: a case-crossover study of Barcelona, Spain. Environ. Health Perspect. 119, 1781-1787. 

  49. Puck, B. van K., Elisabeth, A. van E., Anke, J. L., H. L. M., Willem, L. and Gerben, F. 2019. Pathogenesis of respiratory syncytial virus infection in BALB/c mice differs between intratracheal and intranasal inoculation. Viruses 11, 508. 

  50. Pei, Y., Jiang, R., Zou, Y., Wang, Y., Zhang, S., Wang, G., Zhao, J. and Song, W. 2016. Effects of fine particulate matter (PM2.5) on systemic oxidative stress and cardiac function in ApoE-/-Mice. Int. J. Environ. Res. Public. Health 13, 484. 

  51. Rao, X., Zhong, J., Maiseyeu, A., Gopalakrishnan, B., Villamena, F. A., Chen, L. C., Harkema, J. R., Sun, Q. and Rajagopalan, S. 2014. CD36-Dependent 7-Ketocholesterol accumulation in macrophages mediates progression of atherosclerosis in response to chronic air pollution exposure. Circ. Res. 115, 770-780. 

  52. Reis, M. A., Carvalho, A., Taborda, A., Quaresma, A., Dias, G., Alves, L. C., Mota, M., Chaves, P. C., Teixeira, R. and Rodrigues, P. O. 2009. High airborne $PM_{2.5}$ chlorine concentrations link to diabetes surge in Portugal. Sci. Total. Environ. 407, 5726-5734. 

  53. Riva, D. R., Magalhaes, C. B., Lopes, A. A., Lancas, T., Mauad, T., Malm, O., Valenca, S. S., Saldiva, P. H., Faffe, D. S. and Zin, W. A. 2011. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal. Toxicol. 23, 257-267. 

  54. Rumelhard, M., Ramgolam, K., Auger, F., Dazy, A. C., Blanchet, S., Marano, F. and Baeza-Squiban, A. 2007. Effects of PM2.5 components in the release of amphiregulin by human airway epithelial cells. Toxicol. Lett. 168, 155-164. 

  55. Sancini, G., Farina, F., Battaglia, C., Cifola, I., Mangano, E., Mantecca, P., Camatini, M. and Palestini, P. 2014. Health risk assessment for air pollutants: Alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter ( $PM_{2.5}$ ). PLoS One 9, 109685. 

  56. Sofer, T., Baccarelli, A., Cantone, L., Coull, B., Maity, A., Lin, X. and Schwartz, J. 2013. Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics 5, 147-154. 

  57. Solimini, A. G., D'Addario, M. and Villari, P. 2015. Ecological correlation between diabetes hospitalizations and fine particulate matter in Italian provinces. BMC Public Health 15, 708. 

  58. Song, J., Kang, J., Lin, B., Li, J., Zhu, Y., Du, J., Yang, X., Xi, Z. and Li, R. 2017. Mediating role of TRPV1 ion channels in the co-exposure to PM2.5 and formaldehyde of Balb/c Mice asthma model. Sci. Rep. 7, 11926. 

  59. Srimuruganandam, B. and Nagendra, S. 2012. Source characterization of $PM_{10}$ and $PM_{2.5}$ mass using a chemical mass balance model at urban roadside. Sci. Total Environ. 433, 8-19. 

  60. Tang, W., Du, L., Sun, W., Yu, Z., He, F., Chen, J., Li, X., Li, X., Yu, L. and Chen, D. 2017. Maternal exposure to fine particulate air pollution induces epithelial-to-mesenchymal transition resulting in postnatal pulmonary dysfunction mediated by transforming growth factor- ${\beta}$ /Smad3 signaling. Toxicol. Lett. 267, 11-20. 

  61. Viera, L., Chen, K., Nel, A. and Lloret, M. G. 2009. The impact of air pollutants as an adjuvant for allergic sensitization and asthma. Curr. Allergy Asthma Rep. 9, 327-333. 

  62. Wagner, J. G., Allen, K., Yang, H. Y., Nan, B., Morishita, M., Mukherjee, B., Dvonch, J. T., Spino, C., Fink, G. D., Rajagopalan, S., Sun, Q., Brook, R. D. and Harkema, J. R. 2014. Cardiovascular depression in rats exposed to inhaled particulate matter and ozone: effects of diet-induced metabolic syndrome. Environ. Health Perspect. 122, 27-33. 

  63. Wan, Q., Cui, X., Shao, J., Zhou, F., Jia, Y., Sun, X., Zhao, X., Chen, Y., Diao, J. and Zhang, L. 2014. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice by upregulating visfatin expression. Cell Stress Chaperones 19, 715-724. 

  64. Wang, G., Zhen, L., Lu, P., Jiang, R. and Song, W. 2013. Effects of ozone and fine particulate matter (PM2.5) on rat system inflammation and cardiac function. Toxicol. Lett. 217, 23-33. 

  65. Wang, R., Xiao, X., Cao, L., Shen, Z. X., Lei, Y. and Cao, Y. X. 2016. Airborne fine particulate matter induces an upregulation of endothelin receptors on rat bronchi. Environ. Pollut. 209, 20. 

  66. Wang, X., Hui, Y., Zhao, L., Hao, Y., Guo, H. and Ren, F. 2017. Oral administration of Lactobacillus paracasei L9 attenuates PM2.5-induced enhancement of airway hyperresponsiveness and allergic airway response in murine model of asthma. PLoS One 12, 0171721. 

  67. Wei, H., Wei, D., Yi, S., Zhang, F. and Ding, W. J. 2011. Oxidative stress induced by urban fine particles in cultured EA.hy926 cells. Hum. Exp. Toxicol. 30, 579-590. 

  68. Xiao, X., Cao, L., Wang, R., Shen, Z. X. and Cao, Y. X. 2016. Airborne fine particulate matter alters the expression of endothelin receptors in rat coronary arteries. Environ. Pollut. 218, 487-496. 

  69. Xie, Y., Gong, C., Bo, L., Jiang, S., Kan, H., Song, W., Zhao, J. and Li, Y. 2015. Treg responses are associated with PM2.5-induced exacerbation of viral myocarditis. Inhal. Toxicol. 27, 281-6. 

  70. Xie, Y., Zhang, X., Tian, Z., Jiang, R., Chen, R., Song, W. and Zhao, J. 2013. Preexposure to PM2.5 exacerbates acute viral myocarditis associated with Th17 cell. Int. J. Cardiol. 168, 3837-3845. 

  71. Xu, X., Liu, C., Xu, Z., Tzan, K., Zhong, M., Wang, A., Lippmann, M., Chen L. C., Rajagopalan, S. and Sun, Q. 2011. Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue. Toxicol. Sci. 124, 88-98. 

  72. Yan, Y. H., Chou, C. C. K., Wang, J. S., Tung, C. L., Li, Y. R., Lo, K. and Cheng, T. J. 2014. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organ damage in a type 1 diabetic rat model. Toxicol. Appl. Pharmacol. 281, 211-220. 

  73. Yi, L., Wei, C. and Fan, W. 2017. Fine-particulate matter (PM2.5), a risk factor for rat gestational diabetes with altered blood glucose and pancreatic GLUT2 expression. Gynecol. Endocrinol. 25, 1-6. 

  74. Zhao, C., Liao, J., Chu, W., Wang, S., Yang, T., Tao, Y. and Wang, G. 2012. Involvement of TLR2 and TLR4 and Th1/Th2 shift in inflammatory responses induced by fine ambient particulate matter in mice. Inhal. Toxicol. 24, 918-927. 

  75. Zhang, C., Meng, Q., Zhang, X., Wu, S., Wang, S., Chen, R. and Li, X. 2016. Role of astrocyte activation in fine particulate matter-enhancement of existing ischemic stroke in Sprague-Dawley male rats. J. Toxicol. Environ. Health A. 79, 393-401. 

  76. Zhang, J., Fulgar, C. C., Mar, T., Young, D. E., Zhang, Q., Bein, K. J., Cui, L., Castaneda, A., Vogel, C. F. A., Sun, X., Li, W., Smiley-Jewell, S., Zhang, Z. and Pinkerton, K. E. 2018. TH17-induced neutrophils enhance the pulmonary allergic response following BALB/c exposure to house dust mite allergen and fine particulate matter from California and China. Toxicol. Sci. 164, 627-643. 

  77. Zhao, J., Liu, C., Bai, Y., Wang, T. Y., Kan, H. and Sun, Q. 2015. IKK inhibition prevents PM2.5-exacerbated cardiac injury in mice with type 2 diabetes. J. Environ. Sci. (China). 31, 98-103. 

  78. Zhang, X., Zhong, W., Meng, Q., Lin, Q., Fang, C., Huang, X., Li, C., Huang, Y. and Tan, J. 2015. Ambient PM2.5 exposure exacerbates severity of allergic asthma in previously sensitized mice. J. Asthma. 52, 785-794. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로