$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

카바페넴내성장내세균속균종의 임상검사 측면
Clinical Laboratory Aspect of Carbapenem-Resistant Enterobacteriaceae 원문보기

Korean journal of clinical laboratory science : KJCLS = 대한임상검사과학회지, v.52 no.1, 2020년, pp.18 - 27  

박창은 (남서울대학교 임상병리학과.분자진단연구소)

초록
AI-Helper 아이콘AI-Helper

카바페넴내성장내세균속균종(carbapenem-resistant Enterobacteriaceae, CRE)과 카바페넴분해효소 생성 장내세균과(carbapenemase-producing Enterobacteriaceae, CPE)의 정확한 구분과 CPE의 빠른 탐지는 임상 감염의 치료 및 관리에 중요하다. 선별방법은 주로 선택적 배지에서의 직장 면봉 표본 배양 후 카바페넴분해 효소의 활성도, 신속한 카바페넴의 불활성화 방법, 측방유동면역분석(lateral flow immunoassay, LFI), 메트릭스보조레이저 탈착/이온화이온사이클론 공명 질량분석법(matrix assisted laser desorption/ionisation time of flight mass spectrometry, MALDI-TOF MS)을 통해 표현형을 측정하는 분자기반 방법들이다. CRE, 특히 CPE의 적절한 시기에 정확한 탐지는 감염의 임상 치료 및 예방에 필수적이다. 다양한 표현형 검출방법 및 유전자-기반 검출방법이 카바페넴의 신속한 검출을 위해 이용 가능하며, 이들은 임상 미생물학 실험실에서 일상적으로 사용된다. 신속한 처리 시간으로 현장에서 치료를 위한 검사 방법을 사용하는 CRE에 대한 능동적인 감시활동에서 카바페넴분해효소를 생성하는 CRE의 탐지는 중요한 가치를 갖는다. 따라서 카바페넴분해효소의 확산을 통제하기 위해서는 전세계의 많은 검사실에서 신뢰할 수 있고 신속하고 고효율적이며, 간편하고 저비용의 검사법을 사용해야 할 것이다. 환자의 적용에서도 최적의 효과를 가지려면 CRE에 대한 신속한 검사를 통해 항균제의 관리 개입이나 다양한 형태의 임상 의사의 치료에 결정적인 지원을 재현성있게 나타나야 할 것이다. 최적의 검사법을 위해서는 보완되는 검사법을 결합하여 다양한 내성 박테리아 종을 감별하고 다양한 종류의 카바페넴분해효소의 유전적 다양성을 발굴하여 최상의 감염관리 전략을 포괄하는 시스템이 마련되어야 할 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

The correct distinction of carbapenem-resistant Enterobacteriaceae (CRE) and ccarbapenemase producing Enterobacteriaceae (CPE) and the rapid detection of CPE are important for instituting the correct treatment and management of clinical infections. Screening protocols are mainly based on cultures of...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • For a diagnostic assay allowing the detection of this membrane-associated mechanism of resistance in Enterobacteriaceae [55]. The Revogene Carba C assay (Meridian Bioscience, Cincinnati, OH, USA) performances were high as it was able to detect the five major carbapenemases (NDM, VIM, IMP, KPC, and OXA-48). The Revogene Carba C assay showed excellent sensitivity and specificity for the five most common carbapenemases.
  • Therefore, it is a capital issue for worldwide public health to detects carbapenemase to issue alerts and ensure immediate implementation of strict and efficient hospital hygiene measures, in order to prevent and contain outbreaks and to stop the spread of these resistance enzymes. The purpose of this study is to review recently reported papers on the clinically used CRE test method and provide information on the selection of appropriate test method for infection control site.
  • The major innovation is the combined use of faropenem and temocillin for reliable detection (excellent performance with 100% sensitivity and specificity) of OXA-48. its development of a new algorithm to detect the different classes of carbapenemases, for first-line diagnosis, by combining this modified MASTDISCS Combi Carbapenemase Detection set or ID carbapenemase activity test (CAT) discs (Mast Diagnostica GmbH, Reinfeld, Germany) with immunochromatographic methods and molecular biology techniques [5].
본문요약 정보가 도움이 되었나요?

참고문헌 (56)

  1. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(Suppl 1):28-36. https://doi.org/10.1093/infdis/jiw282 

  2. Zasowski EJ, Rybak JM, Rybak MJ. The ${\beta}$ -lactams strike back:ceftazidime-avibactam. Pharmacotherapy. 2015;35:755-770. https://doi.org/10.1002/phar.1622 

  3. Kock R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, et al. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect. 2018;24:1241-1250. https://doi.org/10.1016/j.cmi.2018.04.004 

  4. Vittecoq M, Laurens C, Brazier L, Durand P, Elguero E, Arnal A, et al. VIM-1 carbapenemase-producing Escherichia coli in gulls from southern France. Ecol Evol, 2017;7:1224-1232. https://doi.org/10.1002/ece3.2707 

  5. Gautier G, Guillard T, Podac B, Bercot B, Vernet-Garnier V, de Champs C. Detection of different classes of carbapenemases: adaptation and assessment of a phenotypic method applied to Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii, and proposal of a new algorithm. J Microbiol Methods. 2018;147:26-35. https://doi.org/10.1016/j.mimet.2018.02.01 

  6. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:1151-1161. https://doi.org/10.1128/aac.45.4.1151-1161.2001 

  7. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla (NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046-5054. https://doi.org/10.1128/aac.00774-09 

  8. Chen Z, Wang Y, Tian L, Zhu X, Li L, Zhang B, et al. First report in China of Enterobacteriaceae clinical isolates coharboring blaNDM-1 and blaIMP-4 drug resistance genes. Microb Drug Resist. 2015;21:167-170. https://doi.org/10.1089/mdr.2014.0087 

  9. Yang B, Feng Y, McNally A, Zong Z. Occurrence of Enterobacter hormaechei carrying blaNDM-1 and blaKPC-2 in China. Diagn Microbiol Infect Dis. 2018;90:139-142. https://doi.org/10.1016/j.diagmicrobio.2017.10.007 

  10. Wang J, Yuan M, Chen H, Chen X, Jia Y, Zhu X, et al. First report of Klebsiella oxytoca strain simultaneously producing NDM-1, IMP-4, and KPC-2 carbapenemases. Antimicrob Agents Chemother. 2017;61:E0877-17. https://doi.org/10.1128/AAC.00877-17 

  11. Jorgensen SCJ, Trinh TD, Zasowski EJ, Lagnf AM, Bhatia S, Melvin SM, et al. Real-world experience with ceftazidime-avibactam for multidrug-resistant gram-negative bacterial infections. Open Forum Infect Dis. 2019;6:ofz522. https://doi.org/10.1093/ofid/ofz522 

  12. Vourli S, Giakkoupi P, Miriagou V, Tzelepi E, Vatopoulos AC, Tzouvelekis LS. Novel GES/IBC extended-spectrum ${\beta}$ -lactamase variants with carbapenemase activity in clinical enterobacteria. FEMS Microbiol Lett. 2004;234:209-213. https://doi.org/10.1111/j.1574-6968.2004.tb09535.x 

  13. Carrer A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother. 2008;52:2950-2954. https://doi.org/10.1128/AAC.01672-07 

  14. Mairi A, Pantel A, Sotto A, Lavigne JP, Touati A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis. 2017;37:587-604. https://doi.org/10.1007/s10096-017-3112-7 

  15. Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA, Miller SA, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59:6605-6607. https://doi.org/10.1128/AAC.01165-15 

  16. Zhong H, Wu ML, Feng WJ, Huang SF, Yang P. Accuracy and applicability of different phenotypic methods for carbapenemase detection in Enterobacteriaceae: a systematic review and metaanalysis. J Glob Antimicrob Resist. 2019;pii:S2213-7165(19)30264-4. https://doi.org/10.1016/j.jgar.2019.10.010 

  17. Moubareck CA, Hammoudi Halat D, Sartawi M, Lawlor K, Sarkis DK, Alatoom A. Assessment of the performance of CHROMagar KPC and Xpert Carba-R assay for the detection of carbapenem-resistant bacteria in rectal swabs: first comparative study from Abu Dhabi, United Arab Emirates. J Glob Antimicrob Resist. 2019;20:147-152. https://doi.org/10.1016/j.jgar.2019.07.021 

  18. Genc O, Aksu E. Chromogenic culture media or rapid immunochromatographic test: which is better for detecting Klebsiella pneumoniae that produce OXA-48 and can they be used in blood and urine specimens. J Microbiol Methods. 2018;148:169-173. https://doi.org/10.1016/j.mimet.2018.04.014 

  19. Hinic V, Amrein I, Stammler S, Heckendorn J, Meinel D, Frei R, et al. Comparison of two rapid biochemical tests and four chromogenic selective media for detection of carbapenemase-producing Gram-negative bacteria. J Microbiol Methods. 2017;135:66-68. https://doi.org/10.1016/j.mimet.2017.01.012 

  20. Vasoo S, Lolans K, Li H, Prabaker K, Hayden MK. Comparison of the CHROMagarTM KPC, Remel SpectraTM CRE, and a direct ertapenem disk method for the detection of KPC-producing Enterobacteriaceae from perirectal swabs. Diagn Microbiol Infect Dis. 2014;78:356-359. https://doi.org/10.1016/j.diagmicrobio.2013.08.016 

  21. Zarakolu P, Day KM, Sidjabat HE, Kamolvit W, Lanyon CV, Cummings SP, et al. Evaluation of a new chromogenic medium, chromID OXA-48, for recovery of carbapenemase-producing Enterobacteriaceae from patients at a university hospital in Turkey. Eur J Clin Microbiol. 2015;34:519-525. https://doi.org/10.1007/s10096-014-2255-z 

  22. Perry JD, Naqvi SH, Mirza IA, Alizai SA, Hussain A, Ghirardi S, et al. Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. J Antimicrob Chemother. 2011;66:2288-2294. https://doi.org/10.1093/jac/dkr299 

  23. Pence MA, Hink T, Burnham CA. Comparison of chromogenic media for recovery of carbapenemase-producing Enterobacteriaceae (CPE) and evaluation of CPE prevalence at a tertiary care academic medical center. J Clin Microbiol. 2015;53:663-666. https://doi.org/10.1128/JCM.03208-14 

  24. Hirsch EB, Chang KT, Zucchi PC, Francoeur DN, Ledesma KR, Tam VH, et al. An evaluation of multiple phenotypic screening methods for Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae. J Infect Chemother. 2014;20:224-227. https://doi.org/10.1016/j.jiac.2013.10.011 

  25. Simner PJ, Gilmour MW, DeGagne P, Nichol K, Karlowsky JA. Evaluation of five chromogenic agar media and the Rosco Rapid Carb Screen kit for detection and confirmation of carbapenemase production in Gram-negative bacilli. J Clin Microbiol. 2015;53:105-112. https://doi.org/10.1128/JCM.02068-14 

  26. Malli E, Florou Z, Tsilipounidaki K, Voulgaridi I, Stefos A, Xitsas S, et al. Evaluation of rapid polymyxin NP test to detect colistin-resistant Klebsiella pneumoniae isolated in a tertiary Greek hospital. J Microbiol Methods. 2018;153:35-39. https://doi.org/10.1016/j.mimet.2018.08.010 

  27. LaBombardi VJ, Urban CM, Kreiswirth BN, Chen L, Osorio G, Kopacz J, et al. Evaluation of Remel Spectra CRE agar for the detection of carbapenem resistant bacteria from rectal swabs obtained from residents of a long-term-care facility. J Clin Microbiol. 2015;53:2823-2826. https://doi.org/10.1128/JCM.00789-15 

  28. Kuchibiro T, Komatsu M, Yamasaki K, Nakamura T, Nishio H, Nishi I, et al. Evaluation of the modified carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. J Infect Chemother. 2018;24:262-266. https://doi.org/10.1016/j.jiac.2017.11.010 

  29. van Almsick V, Ghebremedhin B, Pfennigwerth N, Ahmad-Nejad P. Rapid detection of carbapenemase-producing Acinetobacter baumannii and carbapenem-resistant Enterobacteriaceae using a bioluminescence-based phenotypic method. J Microbiol Methods. 2018;147:20-25. https://doi.org/10.1016/j.mimet.2018.02.004 

  30. Bogaerts P, Yunus S, Massart M, Huang TD, Glupczynski Y. Evaluation of the BYG carba test, a new electrochemical assay for rapid laboratory detection of carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2016;54:349-358. https://doi.org/10.1128/JCM.02404-15 

  31. Salimnia H, Fairfax MR, Lephart PR, Schreckenberger P, DesJarlais SM, Johnson JK, et al. Evaluation of the film array(R) blood culture identification panel: results of a multi-center controlled trial. J Clin Microbiol. 2016;54:687-698. https://doi.org/10.1128/JCM.01679-15 

  32. Tato M, Ruiz-Garbajosa P, Traczewski M, Dodgson A, McEwan A, Humphries R, et al. Multisite evaluation of Cepheid Xpert Carba-R assay for the detection of carbapenemase-producing organisms in rectal swabs. J Clin Microbiol. 2016;54:1814-1819. https://doi.org/10.1128/JCM.00341-16 

  33. Rocco VG, Intra J, Sarto C, Tiberti N, Savarino C, Brambilla M, et al. Rapid identification of carbapenemase-producing Klebsiella pneumoniae strains by matrix-assisted laser desorption/ionization-time of flight using $Vitek^{(R)}$ mass spectrometry system. Eurasian J Med. 2019;51:209-213. https://doi.org/10.5152/eurasianjmed.2019.18405 

  34. Yu J, Liu J, Li Y, Yu J, Zhu W, Liu Y, et al. Rapid detection of carbapenemase activity of Enterobacteriaceae isolated from positive blood cultures by MALDI-TOF MS. Ann Clin Microbiol Antimicrob. 2018;17:22. https://doi.org/10.1186/s12941-018-0274-9 

  35. Rapp E, Samuelsen O, Sundqvist M. Detection of carbapenemases with a newly developed commercial assay using matrix assisted laser desorption ionization-time of flight. J Microbiol Methods. 2018;146:37-39. https://doi.org/10.1016/j.mimet.2018.01.008 

  36. Dortet L, Agathine A, Naas T, Cuzon G, Poirel L, Nordmann P. Evaluation of the $RAPIDEC^{(R)}$ CARBA NP, the Rapid CARB $Screen^{(R)}$ and the Carba NP test for biochemical detection of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2015;70:3014-3022. https://doi.org/10.1093/jac/dkv213 

  37. Kunze N, Moerer O, Steinmetz N, Schulze MH, Quintel M, Perl T. Point-of-care multiplex PCR promises short turnaround times for microbial testing in hospital-acquired pneumonia-an observational pilot study in critical ill patients. Ann Clin Microbiol Antimicrob. 2015;14:33. https://doi.org/10.1186/s12941-015-0091-3 

  38. Ledeboer NA, Lopansri BK, Dhiman N, Cavagnolo R, Carroll KC, Granato P, et al. Identification of gram-negative bacteria and genetic resistance determinants from positive blood culture broths by use of the verigene gram-negative blood culture multiplex microarray-based molecular assay. J Clin Microbiol. 2015;53:2460-2472. https://doi.org/10.1128/JCM.00581-15 

  39. Wang Y, Wang Y, Zhang L, Liu D, Luo L, Li H, et al. Multiplex, rapid, and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification. Front Microbiol. 2016;7:753. https://doi.org/10.3389/fmicb.2016.00753 

  40. Hu S, Niu L, Zhao F, Yan L, Nong J, Wang C, et al. Identification of Acinetobacter baumannii and its carbapenem-resistant gene blaOXA-23-like by multiple cross displacement amplification combined with lateral flow biosensor. Sci Rep. 2019;9:17888. https://doi.org/10.1038/s41598-019-54465-8 

  41. Mathers AJ, Stoesser N, Sheppard AE, Pankhurst L, Giess A, Yeh AJ, et al. Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae at a single institution: insights into endemicity from whole-genome sequencing. Antimicrob Agents Chemother. 2015;59:1656-1663. https://doi.org/10.1128/AAC.04292-14 

  42. Cheng C, Zheng F, Rui Y. Rapid detection of blaNDM, blaKPC, blaIMP, and blaVIM carbapenemase genes in bacteria by loop-mediated isothermal amplification. Microb Drug Resist. 2014;20:533-538. https://doi.org/10.1089/mdr.2014.0040 

  43. Frickmann H, Masanta WO, Zautner AE. Emerging rapid resistance testing methods for clinical microbiology laboratories and their potential impact on patient management. Biomed Res Int. 2014;2014:375681. https://doi.org/10.1155/2014/375681 

  44. Niu H, Zhang W, Wei L, Liu M, Liu H, Zhao C, et al. Rapid nanopore assay for carbapenem-resistant Klebsiella pneumoniae. Front Microbiol. 2019;10:1672. https://doi.org/10.3389/fmicb.2019.01672 

  45. Kim JS, Kang GE, Kim HS, Kim HS, Song W, Lee KM. Evaluation of Verigene blood culture test systems for rapid identification of positive blood cultures. Biomed Res Int. 2016;2016:1081536. https://doi.org/10.1155/2016/1081536 

  46. Swayne R, Ellington MJ, Curran MD, Woodford N, Aliyu SH. Utility of a novel multiplex TaqMan PCR assay for metallo- $\beta$ -lactamase genes plus other TaqMan assays in detecting genes encoding serine carbapenemases and clinically significant extended-spectrum $\beta$ -lactamases. Int J Antimicrob. Agents. 2013;42:352-356. https://doi.org/10.1016/j.ijantimicag.2013.06.018 

  47. Girlich D, Oueslati S, Bernabeu S, Langlois I, Begasse C, Arangia N, et al. Evaluation of the BD MAX Check-Points CPO Assay for the detection of carbapenemase producers directly from rectal swabs. J Mol Diagn. 2020;22:294-300. https://doi.org/10.1016/j.jmoldx.2019.10.004 

  48. Saad Albichr I, Anantharajah A, Dodemont M, Hallin M, Verroken A, Rodriguez-Villalobos H. Evaluation of the automated BD Phoenix CPO detect test for detection and classification of carbapenemases in Gram negatives. Diagn Microbiol Infect Dis. 2020;96:114911. https://doi.org/10.1016/j.diagmicrobio.2019.114911 

  49. Byun JH, Seo Y, Kim D, Kim M, Lee H, Yong D, et al. An agar plate-based modified carbapenem inactivation method (p-mCIM) for detection of carbapenemase-producing Enterobacteriaceae. J Microbiol Methods. 2020;168:105781. https://doi.org/10.1016/j.mimet.2019.105781 

  50. Jing X, Min X, Zhang X, Gong L, Wu T, Sun R, et al. The rapid carbapenemase detection method (rCDM) for rapid and accurate detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2019;9:371. https://doi.org/10.3389/fcimb.2019.00371 

  51. Watahiki M, Kawahara R, Suzuki M, Aoki M, Uchida K, Matsumoto Y, et al. Single-tube multiplex polymerase chain reaction for the detection of genes encoding Enterobacteriaceae carbapenemase. Jpn J Infect Dis. 2019 Nov 29. https://doi.org/10.7883/yoken.JJID.2019.041 

  52. Thomson GK, AbdelGhani S, Thomson KS. CPO complete, a novel test for fast, accurate phenotypic detection and classification of carbapenemases. PLoS One. 2019;14:e0220586. https://doi.org/10.1371/journal.pone.0220586 

  53. Byun JH, Kim YA, Kim M, Kim B, Choi JY, Park YS. Evaluation of Xpert Carba-R Assay v.2 to detect carbapenemase genes in two hospitals in Korea. Ann Lab Med. 2020;40:209-215. https://doi.org/10.3343/alm.2020.40.3.209 

  54. Del Bianco F, Morotti M, Zannoli S, Dirani G, Fantini M, Pedna MF, et al. Comparison of four commercial screening assays for the detection of blaKPC, blaNDM, blaIMP, blaVIM, and blaOXA48 in rectal secretion collected by swabs. Microorganisms. 2019;7:E704. https://doi.org/10.3390/microorganisms7120704 

  55. Pinet E, Franceschi C, Collin V, Davin-Regli A, Zambardi G, Pages JM. A simple phenotypic test for detecting the contribution of outer membrane permeability to carbapenem resistance. J Med Microbiol. 2020;69:63-71. https://doi.org/10.1099/jmm.0.001129 

  56. Girlich D, Laguide M, Dortet L, Naas T. Evaluation of the $Revogene^{(R)}$ Carba C Assay for detection and differentiation of carbapenemase-producing Gram negative bacteria. J Clin Microbiol. 2020;58:JCM.01927-19. https://doi.org/10.1128/JCM.01927-19 

저자의 다른 논문 :

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로