$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

실외 실험적 온난화 및 강수 처리에 따른 소나무와 낙엽송 유묘의 초기 생장 특성
The Early Growth Performances of Pinus densiflora and Larix kaempferi Seedlings Under Open-field Experimental Warming and Precipitation Manipulation 원문보기

한국산림과학회지 = Journal of korean society of forest science, v.109 no.1, 2020년, pp.31 - 40  

권보람 (국립산림과학원 산림기술경영연구소) ,  조민석 (국립산림과학원 산림기술경영연구소) ,  양아람 (국립산림과학원 국제산림연구과) ,  장한나 (고려대학교 환경생태공학과) ,  안지애 (국립생태원 복원연구실) ,  손요환 (고려대학교 환경생태공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 기후변화와 관련하여 양묘과정에서 온도와 강수 변화에 따른 주요 침엽수의 생존 및 생장 특성 변화를 알아보고자 수행하였다. 소나무와 낙엽송 노지묘(1-0)를 대상으로 대조구 기준 3℃의 온도를 상승시키거나 ±40%의 강수를 조절한 6처리 생육환경[온도 2처리(대조: TC, 증가: TW) × 강수 3처리(대조: PC, 감소: PD, 증가: PI)] 실외 실험구를 조성하였으며, 생존율, 근원경, 묘고, 물질생산량 및 묘목품질지수 변화를 조사하여 이원분산분석을 수행하였다. 소나무는 온도와 강수 처리에 따른 생존율 차이가 없었지만, 강수가 증가할수록 묘목품질지수가 낮아지는 경향을 보였다. 낙엽송은 온도 상승과 강수 감소에 따라 고사율이 증가하였으며, 묘목품질지수는 두 요인 간 상호작용을 보이면서 온도대조-강수증가 처리구에서 가장 낮게 나타났다. 따라서 양묘과정에서 소나무는 강수 증가, 낙엽송은 온도 증가 또는 강수 감소에서 낮은 묘목 생산량과 품질이 예상되며, 기후변화에 따른 두 수종의 특이적 민감도를 확인할 수 있었다. 향후 지구온난화와 가뭄·폭우 등의 강수 변화에 의해 수종별 묘목 생존과 품질의 변화가 예상되기 때문에 각 수종의 생육 반응 특성에 따른 적합한 양묘시업 대응 전략이 필요할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

This study aimed to investigate the effects of climate change on the survival and growth performance of Pinus densiflora and Larix kaempferi seedlings using open-field experimental warming and precipitation manipulation. We measured the survival rate, root-collar diameter, and height, and then calcu...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 따라서 본 연구에서는 기후변화에 따른 온도 상승과 함께 문제가 되고 있는 강수량 변화와 관련하여, 대기 온도와 강수량의 변화 처리가 묘목의 생장 반응에 미치는 영향을 구명하고자 수행되었다. 이를 위해 우리나라 온대 중·북부 지역의 대표적 조림 수종인 소나무와 낙엽송노지묘(1-0)를 실외 시험지에 식재하여 온도와 강수 처리에 따른 생존율과 생장 특성을 조사하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
지구 온난화로 인한 기후 변화와 전망은? 지구 온난화로 지난 133년간(1880-2013년) 대기 온도는 평균 약 0.85℃가 상승했으며, 21세기 말 지구의 평균기온은 현재보다 약 3.7℃ 상승(RCP 8.5 기준) 될 것으로 전망된다(Intergovernmental Panel on Climate Change, 2014). 기온은 수목의 생리 작용 및 생장 변화를 초래하는 주요 영향 인자로, 기후변화 시나리오에 근거한 온난화는 국내 침엽수림 분포의 북상에 영향을 미칠 것으로 예측된다(Ko et al.
양묘장에서 발생하는 묘목 피해의 주요 원인은? 묘목의 품질과 생산성은 온·습도, 수분함량, 광량, 양분 조건 등 여러 환경 인자들에 영향을 받으며(Danby and Hik, 2007; Baribault et al., 2010), 특히 온난화와 함께 가뭄과 폭우가 빈번히 발생하는 상황에서는 이러한 기상재해가 주요 원인으로 여겨지고 있다(Allen et al., 2010). 이는 온도 변화와 수분 가용 조건이 잎의 기공 개폐에 직접적인 영향을 미쳐 증산과 광합성 작용 등의 생리활성을 변화시킴으로써 묘목의 생존과 생장에 직결되는 인자이기 때문이다(Wu et al.
온대 중·북부 지역에서 주요 조림 수종으로 권장되는 것은? 현재 벌기령에 도달한 우리나라 산림에서는 목재 자원을 이용하고 다시 경제림을 조성하기 위한 선순환 정책 이 추진되고 있으며, 조림 면적의 확대에 대응하기 위해서는 안정적인 묘목 생산과 공급이 필요하다(Korea Forest Service, 2018). 특히 온대 중·북부 지역에서는 우수한 목재 가치를 가진 소나무(Pinus densiflora)와 낙엽송(Larix kaempferi)이 주요 조림 수종으로 권장되어 고품질 묘목의 안정적 공급이 요구되는 실정이다. 그러나 노지 양묘 및 조림 초기 단계의 묘목은 항시 기상재해의 위협에 노출되어 있기 때문에, 이들 수종의 생장 특성을 실외 실험적 처리 환경에서 구명하는 것은 고품질의 묘목 생산과 이와 연계된 우수한 조림 성과를 이루기 위한 측면에서도 중요하다(Kim et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (48)

  1. Adams, H.D., Barron-Gafford, G.A., Minor, R.L., Gardea, A.A., Bentley, L.P., Law, D.J., Breshears, D.D., McDowell, N.G. and Huxman, T.E. 2017. Temperature response surfaces for mortality risk of tree species with future drought. Environmental Research Letters 12(11): 115014. 

  2. Adams, H.D., Collins, A.D., Briggs, S.P., Vennetier, M., Dickman, L.T., Sevanto, S.A., Garcia, N., Forner, H., Powers, H. and McDowell, N.G. 2015. Experimental drought and heat can delay phenological development and reduce foliar and shoot growth in semiarid trees. Global Change Biology 21(11): 4210-4220. 

  3. Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G.A., Villegas, J.C., Breshears, D.D., Zou, C.B., Troch, P.A. and Huxman, T.E. 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America 106(17): 7063-7066. 

  4. Allen, C.D., Breshears, D.D. and McDowell, N.G. 2015. On underestimation of global vulnerability to tree mortality and forest die off from hotter drought in the Anthropocene. Ecosphere 6(8): 1-55. 

  5. Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D.D. and Hogg, E.T. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4): 660-684. 

  6. Arend, M., Kuster, T., Gunthardt-Goerg, M.S. and Dobbertin, M. 2011. Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology 31(3): 287-297. 

  7. Bailey-Serres, J. and Voesenek, L.A.C.J. 2008. Flooding stress: acclimations and genetic diversity. Annual Review of Plant Biology 59: 313-339. 

  8. Baribault, T.W., Kobe, R.K. and Rothstein, D.E. 2010. Soil calcium, nitrogen, and water are correlated with aboveground net primary production in northern hardwood forests. Forest Ecology and Management 260(5): 723-733. 

  9. Bayala, J., Dianda, M., Wilson, J., Ouedraogo, S. and Sanon, K. 2009. Predicting field performance of five irrigated tree species using seedling quality assessment in Burkina Faso, West Africa. New Forests 38(3): 309-322. 

  10. Bronson, D.R., Gower, S.T., Tanner, M. and Van Herk, I. 2009. Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Global Change Biology 15(6): 1534-1543. 

  11. Castro, J., Zamora, R., Hodar, J.A. and Gomez, J.M. 2005. Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecology 181: 191-202. 

  12. Cho, M.S., Kim, G.N., Kwon, K.W. and Lee, S.W. 2010. Effect of planting season and vegetation competition on growth performances of containerized seedlings of Pinus densiflora. Journal of Korean Forest Society 99(3): 359-367 (In Korean with English abstract). 

  13. Cho, M.S., Hwang, J., Yang, A., Han, S. and Son, Y. 2014. Seed germination and seedling survival rate of Pinus densiflora and Abies holophylla in open-field experimental warming using the infrared lamp. Journal of Korean Society of Forest Science 103(2): 203-210 (In Korean with English abstract). 

  14. Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Feild, T.S., Gleason, S.M. and Hacke, U.G. 2012. Global convergence in the vulnerability of forests to drought. Nature 491(7426): 752. 

  15. Chung, H., Muraoka, H., Nakamura, M., Han, S., Muller, O. and Son, Y. 2013. Experimental warming studies on tree species and forest ecosystems: A literature review. Journal of Plant Research 126(4): 447-460. 

  16. Dai, A. 2011. Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change 2(1): 45-65. 

  17. Danby, R.K. and Hik, D.S. 2007. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine tree line. Global Change Biology 13(2): 437-451. 

  18. Deans, J., Mason, W., Cannell, M., Sharpe, A. and Sheppard, L. 1989. Growing regimes for bare-root stock of Sitka spruce, Douglas-fir and Scots pine. 1. morphology at the end of the nursery phase. Forestry 62: 53-60. 

  19. George, J., Grabner, M., Karanitsch-Ackerl, S., Mayer, K., Weissenbacher, L., Schueler, S. and Makela, A. 2017. Genetic variation, phenotypic stability, and repeatability of drought response in european larch throughout 50 years in a common garden experiment. Tree Physiology 37(1): 33-46. 

  20. Gunderson, C.A., Edwards, N.T., Walker, A.V., O'Hara, K.H., Campion, C.M. and Hanson, P.J. 2012. Forest phenology and a warmer climate-growing season extension in relation to climatic provenance. Global Change Biology 18(6): 2008-2025. 

  21. Han, S.H., Kim, S., Li, G., Chang, H., Yun, S.J., An, J. and Son, Y. 2018. Effects of warming and precipitation manipulation on fine root dynamics of Pinus densiflora Sieb. et Zucc. seedlings. Forests 9(1): 14. 

  22. Intergovernmental Panel on Climate Change. 2014. Climate change 2014: Synthesis report. Intergovernmental Panel on Climate Change, Switzerland. 

  23. Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Luo, C., Morgan, J. and Smith, D. 2008. Infrared heater arrays for warming ecosystem field plots. Global Change Biology 14(2): 309-320. 

  24. Kim J.J., Kwon, K.W., Kim, P.G., Yoon, T.S., Lee, K.J., Chung, Y.S. and Song, K.S. 2010a. Characteristics of meteorological disasters in Korean nursery industry. Journal of Climate Research 5(1): 42-53 (In Korean with English abstract). 

  25. Kim, P.G., Kwon, K.W., Yoon, T.S., Lee, K.J., Song, K.S., Cha, Y.G. and Kim, J.J. 2010b. Damages of seedlings by meteorological disasters in nursery. Journal of Climate Research 5(2): 148-161 (In Korean with English abstract). 

  26. Ko, S.Y., Sung, J.H., Chun, J.H., Lee, Y.G. and Shin, M.Y. 2014. Predicting the changes of yearly productive area distribution for Pinus densiflora in Korea based on climate change scenarios. Korean Journal of Agricultural and Forest Meteorology 16(1): 72-82 (In Korean with English abstract). 

  27. Koike, T., Kitao, M., Quoreshi, A. and Matsuura, Y. 2003. Growth characteristics of root-shoot relations of three birch seedlings raised under different water regimes. Roots: The dynamic interface between plants and the earth. Springer 303-310. 

  28. Korea Forest Service. 2012. Guidelines for seed and seedling management. Korea Forest Service, Korea (in Korean). 

  29. Korea Forest Service. 2018. The 6st National Forest Plan. Korea Forest Service, Korea (in Korean). 

  30. Korea Meteorological Administration. 2016. Report of Global Atmosphere Watch 2016. Korea Meteorological Administration, Korea. (in Korean). 

  31. Korea Meteorological Administration. 2019. https://www.weather.go.kr/weather/climate/past_cal.jsp. Climate Information Portal. (2019.11.30.). 

  32. Lee, S.N. 2016. Damages characteristics of nursery industry owing to meteorological disasters in Korea and plan for overcome. (Disseration). Seoul. Konkuk University (In Korean with English abstract). 

  33. Lee, S.J., Han, S., Yoon, T.K., Han, S.H., Jung, Y., Yun, S.J. and Son, Y. 2013. Growth and physiological characteristics of Pinus densiflora seedlings in response to open-field experimental warming using the infrared lamp. Journal of Korean Society of Forest Science 102(4): 522-529. (In Korean with English abstract). 

  34. Lee, S.J., Han, S., Yoon, T.K., Chung, H., Noh, N.J., Jo, W., Park, C., Ko, S., Han, S.H. and Son, Y. 2012. Effects of experimental warming on growth of Quercus variabilis seedlings. Journal of Korean Society of Forest Science 101(4): 722-728 (In Korean with English abstract). 

  35. Lopez, R., Rodriguez-Calcerrada, J. and Gil, L. 2009. Physiological and morphological response to water deficit in seedlings of five provenances of Pinus canariensis: potential to detect variation in drought-tolerance. Trees 23(3): 509-519. 

  36. Manzoni, S., Vico, G., Katul, G., Palmroth, S., Jackson, R.B. and Porporato, A. 2013. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off. New Phytologist 198(1): 169-178. 

  37. Park, M., Yun, S., Yun, H., Chang, H., Han, S., An, J. and Son, Y. 2016. Effects of open-field artificial warming and precipitation manipulation on physiological characteristics and growth of Pinus densiflora seedlings. Journal of Climate Change Research 7: 9-17 (In Korean with English abstract). 

  38. Penuelas, J., Gordon, C., Llorens, L., Nielsen, T., Tietema, A., Beier, C., Bruna, P., Emmett, B., Estiarte, M. and Gorissen, A. 2004. Nonintrusive field experiments show different plant responses to warming and drought among sites, seasons, and species in a north-south European gradient. Ecosystems 7(6): 598-612. 

  39. Reinhardt, K., Germino, M.J., Kueppers, L.M. Domec, J. and Mitton, J. 2015. Linking carbon and water relations to drought-induced mortality in Pinus flexilis seedlings. Tree Physiology 35(7): 771-782. 

  40. Sala, A., Piper, F. and Hoch, G. 2010. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytology 186: 274-281. 

  41. Saxe, H., Cannell, M.G., Johnsen, O., Ryan, M.G. and Vourlitis, G. 2001. Tree and forest functioning in response to global warming. New Phytologist 149(3): 369-399. 

  42. Slaney, M., Wallin, G., Medhurst, J. and Linder, S. 2007. Impact of elevated carbon dioxide concentration and temperature on bud burst and shoot growth of boreal norway spruce. Tree Physiology 27(2): 301-312. 

  43. Terazawa, K., Maruyama, Y. and Morikawa, Y. 1992. Photosynthetic and stomatal responses of Larix kaempferi seedlings to short-term waterlogging. Ecological Research 7(2): 193-197. 

  44. Tyree, M.T. and Sperry, J.S. 1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?: Answers from a model. Plant Physiology 88(3): 574-580. 

  45. Urban, J., Rubtsov, A., Shashkin, A. and Benkova, V. 2017. Growth, transpiration and water use efficiency of Larix sibirica, Larix gmelinii and Pinus sylvestris forest in Siberia. International Society for Horticultural Science 1222: 124-132. 

  46. Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam, T.W., Rauscher, S.A., Seager, R. and Grissino-Mayer, H.D. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 3(3): 292. 

  47. Wu, Z., Dijkstra, P., Koch, G.W., Penuelas, J. and Hungate, B.A. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: A meta analysis of experimental manipulation. Global Change Biology 17(2): 927-942. 

  48. Xu, Z., Hu, T. and Zhang, Y. 2012. Effects of experimental warming on phenology, growth and gas exchange of tree line birch (Betula utilis) saplings, eastern tibetan plateau, China. European Journal of Forest Research 131(3): 811-819. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로