$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구
Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting 원문보기

전기화학회지 = Journal of the Korean Electrochemical Society, v.23 no.2, 2020년, pp.25 - 38  

유지선 (고려대학교 신소재화학과) ,  차은희 (고려대학교 신소재화학과) ,  박정희 (고려대학교 신소재화학과) ,  임수아 (호서대학교 제약공학과)

초록
AI-Helper 아이콘AI-Helper

태양광 흡수 물분해는 화석연료 대체 에너지원으로 떠오르는 수소에너지를 생산할 수 있는 가장 유망한 방법이다. 현재 전이 금속 디칼코제나이드 (transition dichalcogenide, TMD)는 물분해 촉매 특성이 뛰어난 물질로 많은 관심을 끌고 있다. 본 연구에서는 실리콘 (Si) 나노선 어레이 전극 표면에 대표적 TMD 물질인 4-6족의 이황화 몰리브덴 (MoS2), 이셀렌화 몰리브덴(MoSe2), 이황화 텅스텐 (WS2), 이셀렌화 텅스텐 (WSe2) 나노시트 합성할 수 있는 방법을 개발하였다. Si나노선 전극을 금속 이온 용액으로 코팅하고, 황 또는 셀레늄의 화학 기상 증착법(chemical vapor deposition)을 이용하는 것이다. 이 방법으로 TMD 나노시트를 약 20 nm 두께로 균일하게 합성하였다. p형 Si-TMD 나노선 광전극으로 구성된 광화학전지는 태양광 AM1.5G, 0.5 M H2SO4 전해질에서 개시 전위 0.2 V를 가지며 0 V (vs. RHE)에서 20 mA cm-2 이상의 전류를 낼 수 있다. 수소 발생 양자효율은 90% 정도로 우수한 물분해 촉매 특성을 확인하였다. MoS2 및 MoSe2는 3시간 동안 90% 이상의 우수한 광전류 안전성을 보여주었으나, WS2 및 WSe2는 상대적으로 적은 80%였다. MoS2, MoSe2는 Si 나노선 표면에 균일한 시트 형태로 씌워졌지만, WS2, WSe2는 조각 형태로 붙었다. 따라서 Si 표면을 잘 보호하지 못하기 때문에 Si나노선이 더 잘 산화되어 안정성이 낮아지는 것으로 해석하였다. 본 연구결과는 TMD의 수소 발생 촉매 특성을 이해하는 데 크게 기여할 것으로 예상한다.

Abstract AI-Helper 아이콘AI-Helper

Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evol...

주제어

표/그림 (10)

질의응답

핵심어 질문 논문에서 추출한 답변
광전기화학적 물분해의 구동력과 그 원리는? 광전기화학적(photoelectrochemical, PEC) 물분해는 반도체 광전극, 기준 전극, 상대 전극, 전해질로 구성 된 전지 내에서 빛으로 광촉매 전극을 여기시키고 생성된 전자-정 쌍으로 물을 분해하는 방법이다. 띠 구부러짐 현상에 의해 전극 표면에 전위차가 생성되고, 이 전위차가 전자-정공의 재결합을 억제해 광효율이 증가한다. 또 각기 다른 전극에서 산화-환원 반응이 일어나므로 생성물을 분리하지 않아도 되고, 시스템이 단순하다. PEC 물분해는 1972년에 최초로 이산화 타이타늄(TiO2) 전극에 UV를 조사하여 성공하였고, 이로 인해 광전기화학적 물분해에 많은 관심이 쏠렸다.
대체 에너지의 특징은 무엇인가? 따라서 차세대 대체 에너지원을 찾아야 하며, 이는 현시대의 인류가 반드시 해결해야 할 가장 큰 과제이다. 대체 에너지는 지속적이고, 재생 가능하며, 환경 오염을 일으키지 않고 산유국이 아닌 어느 나라에서나 생산되어야 한다. 그 중에서 수소 에너지는 국내에서도 주목받고 있으며 공기 중에서 깨끗하게 연소하여 환경친화적이다.
화석 연료의 사용량이 급증하며 발생한 문제는 무엇인가? 화석 연료의 사용량이 급격히 증가함에 따라 자원 고갈, 지구 온난화, 대기 오염 및 심각한 환경 파괴 등 다양한 문제가 발생한다. 따라서 차세대 대체 에너지원을 찾아야 하며, 이는 현시대의 인류가 반드시 해결해야 할 가장 큰 과제이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (43)

  1. A. Fujishima, and K. Honda, 'Electrochemical Photolysis of Water at a Semiconductor Electrode', Nature, 238, 37-38 (1972). 

  2. R. N. Dominey, N. S. Lewis, J. M. Bruce, D. C. Bookbinder, and M. S. Wrighton, 'Improvement of Photoelectrochemical Hydrogen Generation by Surface Modification of p-Type Silicon Semiconductor Photocathodes', J. Am. Chem. Soc., 104, 467-482 (1982). 

  3. O. Khaselev, and J. A. Turner, 'Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting', Science, 280, 425-427 (1998). 

  4. W. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, 'Solar Water Splitting Cells', Chem. Rev., 110, 6446-6473 (2010). 

  5. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, and E. Thimsen, 'Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction', Nat. Mater., 10, 456-461 (2011). 

  6. Y. Hou, B. L. Abrams, P. C. K. Vesborg, M. E. Bjorketun, K. Herbst, L. Bech, A. M. Setti, C. D. Damsgaard, T. Pedersen, O. Hansen, J. Rossmeisl, S. Dahl, J. K. Nørskov, and I. Chorkendorff, 'Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution', Nat. Mater., 10, 434-438 (2011). 

  7. Y. W. Chen, J. D. Prange, S. Duhnen, Y. Park, M. Gunji, C. E. D. Chidsey, and P. C. McIntyre, 'Atomic Layerdeposited Tunnel Oxide Stabilizes Silicon Photoanodes for Water Oxidation', Nat. Mater., 10, 539-544 (2011). 

  8. S. Y. Reece, J. A. Hamel, K. Sung, T. D. Jarvi, A. J. Esswein, J. J. H. Pijpers, and D. G. Nocera, 'Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts', Science, 334, 645-648 (2011). 

  9. M. J. Kenney, M. Gong, Y. Li, J. Z. Wu, J. Feng, M. Lanza, and H. Dai, 'High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation', Science, 342, 836-840 (2013). 

  10. K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, and D. Wang, 'Enabling Silicon for Solar-Fuel Production', Chem. Rev., 114, 8662-8719 (2014). 

  11. L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, 'A Silicon-Based Photocathode for Water Reduction with an Epitaxial $SrTiO_3$ Protection Layer and a Nanostructured Catalyst', Nat. Nanotech., 10, 84-90 (2015). 

  12. J. C. Hill, A. T. Landers, and J. A. Switzer, 'An Electrodeposited Inhomogeneous Metal-Insulator-Semiconductor Junction for Efficient Photoelectrochemical Water Oxidation', Nat. Nanotech., 14, 1150-1155 (2015). 

  13. Z. Huang, C. Wang, L. Pan, F. Tian, X. Zhang, and C. Zhang, 'Enhanced Photoelectrochemical Hydrogen Production Using Silicon Nanowires@ $MoS_3$ ', Nano Energy, 2, 1337-1346 (2013). 

  14. J. Y. Jung, M. J. Choi, K. Zhou, X. Li, S. W. Jee, H. D. Um, M. J. Park, K. T. Park, J. H. Bang and J. H. Lee, 'Photoelectrochemical Water Splitting Employing a Tapered Silicon Nanohole Array', J. Mater. Chem. A, 2, 833-842 (2014). 

  15. C. W. Roske, E. J. Popczun, B. Seger, C. G. Read, T. Pedersen, O. Hansen, P. C. K. Vesborg, B. S. Brunschwig, R. E. Schaak, I. Chorkendorff, H. B. Gray, and N. S. Lewis, 'Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction $n^+$ p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to $H_2$ (g)', J. Phys. Chem. Lett., 6, 1679-1683 (2015). 

  16. M. Basu, Z. W. Zhang, C. J. Chen, P. T. Chen, K. C. Yang, C. G. Ma, C. C. Lin, S. F. Hu, and R. S. Liu, 'Heterostructure of Si and $CoSe_2$ : A Promising Photocathode Based on a Non-Noble Metal Catalyst for Photoelectrochemical Hydrogen Evolution', Angew. Chem. Int. Ed., 54, 6211-6216 (2015). 

  17. C. Lv, Z. Chen, Z. Chen, B. Zhang, Y. Qin, Z. Huang, and C. Zhang, 'Silicon Nanowires Loaded with Iron Phosphide for Effective Solar-Driven Hydrogen Production', J. Mater. Chem. A, 3, 17669-17675 (2015). 

  18. Q. Ding, J. Zhai, M. Caban-Acevedo, M. J. Shearer, L. Li, H. C. Chang, M. L. Tsai, D. Ma, X. Zhang, R. J. Hamers, J. H. He, and S. A. Jin, 'Designing Efficient Solar-Driven Hydrogen Evolution Photocathodes Using Semitransparent $MoQ_xCl_y$ (Q S, Se) Catalysts on Si Micropyramids', Adv. Mater., 27, 6511-6518 (2015). 

  19. H. Zhang, Q. Ding, D. He, H. Liu, W. Liu, Z. Li, B. Yang, X. Zhang, L. Lei, and S. A. Jin, 'A p-Si/ $NiCoSe_x$ Core/Shell Nanopillar Array Photocathode for Enhanced Photoelectrochemical Hydrogen Production', Energy Environ. Sci., 9, 3113-3119 (2016). 

  20. D. Liu, J. Ma, R. Long, C. Gao, and Y. Xiong, 'Silicon Nanostructures for Solar-Driven Catalytic Applications', Nano Today, 17, 96-116 (2017). 

  21. C. J. Chen, K. C. Yang, C. W. Liu, Y. R. Lu, C. L. Dong, D. H. Wei, S. F. Hu, and R. S. Liu, 'Silicon Microwire Arrays Decorated with Amorphous Heterometal-Doped Molybdenum Sulfide for Water Photoelectrolysis', Nano Energy, 32, 422-432 (2017). 

  22. W. Vijselaar, R. M. Tiggelaar, H. Gardeniers, and J. Huskens, 'Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions', ACS Energy Lett., 3, 1086-1092 (2018). 

  23. S. Lee, S. Cha, Y. Myung, K. Park, I. H. Kwak, I. S. Kwon, J. Seo, S. A. Lim, E. H. Cha, and J. Park, 'Orthorhombic $NiSe_2$ Nanocrystals on Si Nanowires for Efficient Photoelectrochemical Water Splitting', ACS Appl. Mater. Interfaces, 10, 33196-33204 (2018). 

  24. D. Hu, J. Xiang, Q. Zhou, S. Su, Z. Zhang, X. Wang, M. Jin, L. Nian, R. Nozel, G. Zhou, Z. Zhang, and J. Liu, 'One-step Chemical Vapor Deposition of $MoS_2$ Nanosheets on SiNWs as Photocathodes for Efficient and Stable Solar-Driven Hydrogen Production', Nanoscale, 10, 3518-3525 (2018). 

  25. X. Sun, J. Jiang, Y. Yang, Y. Shan, L. Gong, and M. Wang, 'Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and $TiO_2$ ', ACS Appl. Mater. Interfaces, 11, 19132-19140 (2019). 

  26. P. D. Tran, S. S. Pramana, V. S. Kale, M. Nguyen, S. Y. Chiam, S. K. Batabyal, L. H. Wong, J. Barber, and J. Loo, 'Novel Assembly of an $MoS_2$ Electrocatalyst onto a Silicon Nanowire Array Electrode to Construct a Photocathode Composed of Elements Abundant on the Earth for Hydrogen Generation', Chem. Eur. J., 18, 13994-13999 (2012). 

  27. Q. Ding, F. Meng, C. R. English, M. C. Acevedo, M. J. Shearer, D. Liang, A. S. Daniel, R. J. Hamers, and S. Jin, 'Novel Assembly of an $MoS_2$ Electrocatalyst onto a Silicon Nanowire Array Electrode to Construct a Photocathode Composed of Elements Abundant on the Earth for Hydrogen Generation', J. Am. Chem. Soc., 136, 8504-8507 (2014). 

  28. L. Zhang, C. Liu, A. B. Wong, J. Resasco, and P. Yang, 'Novel Assembly of an $MoS_2$ Electrocatalyst onto a Silicon Nanowire Array Electrode to Construct a Photocathode Composed of Elements Abundant on the Earth for Hydrogen Generation', Nano Res., 8, 281-287 (2015). 

  29. K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y. S. Shim, D. H. Kim, T. Kim, W. Sohn, J. M. Jeon, C. H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, 'Wafer-scale Transferable Molybdenum Disulfide Thin-film Catalysts for Photoelectrochemical Hydrogen Production', Energy Environ. Sci., 9, 2240-2248 (2016). 

  30. S. Oh, J. B. Kim, J. T. Song, J. Oh, and S. H. Kim, 'Atomic Layer Deposited Molybdenum Disulfide on Si Photocathodes for Highly Efficient Photoelectrochemical Water Reduction Reaction', J. Mater. Chem. A, 5, 3304-3310 (2017). 

  31. L. A. King, T. R. Hellstern, J. Park, R. Sinclair, and T. F. Jaramillo, 'Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting', ACS Appl. Mater. Interfaces, 9, 36792-36798 (2017). 

  32. R. Fan, J. Mao, Z. Yin, J. Jie, W. Dong, L. Fang, F. Zheng, and M. Shen, 'Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano- $MoS_2$ Films for Solar Hydrogen Production', ACS Appl. Mater. Interfaces, 9, 6123-6129 (2017). 

  33. Yi. Hou, Z. Zhu, Y. Xu, F. Guo, J. Zhang, and X. Wang, 'Efficient Photoelectrochemical Hydrogen Production Over p-Si Nanowire Arrays Coupled with Molybdenume-Sulfur Clusters', J. Hydrog. Energy, 42, 2832-2838 (2017). 

  34. D. M. Andoshe, G. Jin, C. S. Lee, C. Kim, K. C. Kwon, S. Choi, W. Sohn, C. W. Moon, S. H. Lee, J. M. Suh, S. Kang, J. Park, H. Heo, J. K. Kim, S. Han, M. H. Jo, and H. W. Jang, 'Directly Assembled 3D Molybdenum Disulfide on Silicon Wafer for Efficient Photoelectrochemical Water Reduction', Adv. Sustainable Syst., 2, 1700142 (2018). 

  35. Q. Zhou, S. Su, D. Hu, L. Lin, Z. Yan, X. Gao, Z. Zhang, and J. M. Liu, 'Ultrathin $MoS_2$ -coated Ag@Si Nanosphere Arrays as an Efficient and Stable Photocathode for Solar-driven Hydrogen Production', Nanotechnology, 29, 105402 (2018). 

  36. J. Joe, C. Bae, E. Kim, T. A. Ho, H. Yang, J. H. Park, and H. Shin, 'Mixed-Phase (2H and 1T) $MoS_2$ Catalyst for a Highly Efficient and Stable Si Photocathode', Catalysts, 8, 580 (2018). 

  37. M. Alqahtani, S. Sathasivam, F. Cui, L. Steier, X. Xia, C. Blackman, E. Kim, H. Shin, M. Benamara, Y. I. Mazur, G. J. Salamo, I. P. Parkin, H. Liua, and J. Wu, 'Heteroepitaxy of GaP on Silicon for Efficient and Costeffective Photoelectrochemical Water Splitting', J. Mater. Chem. A, 7, 8550-8558 (2019). 

  38. R. Fan, G. Huang, Y. Wang, Z. Mi, and M. Shen, 'Efficient n+p-Si Photocathodes for Solar H2 Production Catalyzed by Co-W-S and Stabilized by Ti Buffer Layer', Appl. Catal. B, 237, 158-165 (2018). 

  39. G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, Z. Kang, and M. Shen, 'Integrated MoSe2 with n+p-Si Photocathodes for Solar Water Splitting with High Efficiency and Stability', Appl. Phys. Lett., 112, 013902 (2018). 

  40. A. Hasani, Q. V. Le, M. Tekalgne, M. J. Choi, T. H. Lee, S. H. Ahn, H. W. Jang, and S. Y. Kim, 'Fabrication of a WS2/p-Si Heterostructure Photocathode Using Direct Hybrid Thermolysis', ACS Appl. Mater. Interfaces, 11, 29910-29916 (2019). 

  41. I. H. Kwak, I. S. Kwon, H. G. Abbas, J. Seo, G. Jung, Y. Lee, D. Kim, J. -P. Ahn, J. Park, and H. S. Kang, 'Intercalated Complexes of 1T'- $MoS_2$ Nanosheets with Alkylated Phenylenediamines as Excellent Catalysts for Electrochemical Hydrogen Evolution', J. Mater. Chem. A, 7, 2334-2343 (2019). 

  42. J. He, K. Hummer, and C. Franchini, 'Stacking Effects on the Electronic and Optical Properties of Bilayer Transition Metal Dichalcogenides $MoS_2,\;MoSe_2,\;WS_2,\;and\;WSe_2$ ', Phys. Rev. B, 89, 075409 (2014). 

  43. F. Zeng, Z. W. -B. Zhang, Tang B. -Y. Tang, 'Electronic Structures and Elastic Properties of Monolayer and Bilayer Transition Metal Dichalcogenides $MX_2$ (M Mo, W; X O, S, Se, Te): A Comparative First-Principles Study', Chin. Phys. B, 24, 097103 (2015). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로