$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Simulation on mass transfer at immiscible liquid interface entrained by single bubble using particle method 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.52 no.6, 2020년, pp.1172 - 1179  

Dong, Chunhui (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) ,  Guo, Kailun (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) ,  Cai, Qinghang (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) ,  Chen, Ronghua (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) ,  Tian, Wenxi (School of Nuclear Science and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) ,  Qiu, Suizheng (School of Nuclear Sc) ,  Su, G.H.

Abstract AI-Helper 아이콘AI-Helper

As a Lagrangian particle method, Moving Particle Semi-implicit (MPS) method has great capability to capture interface/surface. In recent years, the multiphase flow simulation using MPS method has become one of the important directions of its developments. In this study, some key methods for multipha...

주제어

참고문헌 (37)

  1. D.Y. Song, N. Maruoka, T. Maeyama, et al., Influence of bottom bubbling condition on metal emulsion formation in lead-salt system, ISIJ Int. 50 (11) (2010) 1539-1545. 

  2. R.H. Chen, J. Wang, G.H. Su, et al., Analysis of KROTOS KS-2 and KS-4 steam explosion experiments with Texas-VI, Nucl. Eng. Des. 309 (1) (2016) 104-112. 

  3. A.J. Suo-Anttila, The Mixing of Immiscible Liquid Layers by Gas Bubbling. Division of Reactor System Safety, Office of Nuclear Regulatory Research, U.S, Nuclear Regulatory Commission, 1988. 

  4. H. Werle, Enhancement of heat transfer between two horizontal liquid layers by gas injection at the bottom, Nucl. Technol. 59 (1) (1982) 160-164. 

  5. J. Szekely, Mathematical model for heat or mass transfer at the bubble-stirred interface of two immiscible liquids, Int. J. Heat Mass Transf. 6 (5) (1963) 417-422. 

  6. G.A. Green, J.C. Chen, M.T. Conlin, Onset of entrainment between immiscible liquid layers due to rising gas bubbles, Int. J. Heat Mass Transf. 31 (6) (1988) 1309-1317. 

  7. G.A. Green, J.C. Chen, T.F. Irvien, Heat transfer between stratified immiscible liquid layers driven by gas bubbling across the interface, in: ANS Proceedings of the National Heat Transfer Conference, Houston, TX, 1988. 

  8. G.A. Green, J.C. Chen, M.T. Conlin, Bubbling induced entrainment between stratified liquid layers, Int. J. Heat Mass Transf. 34 (1) (1991) 149-157. 

  9. J.M. Shaw, R. Konduru, The behaviour of large gas bubbles at a liquid-liquid interface. Part 2: liquid entrainment, Can. J. Chem. Eng. 70 (1992) 381-384. 

  10. Z.J. Han, L. Holappa, Mechanisms of iron entrainment into slag due to rising gas bubbles, ISIJ Int. 43 (3) (2003) 292-297. 

  11. D.Y. Song, N. Maruoka, T. Maeyama, H. Shibata, et al., Influence of bottom bubbling condition on metal emulsion formation in lead-salt system, ISIJ Int. 50 (11) (2010) 1539-1545. 

  12. D.Y. Song, N. Maruoka, G.S. Gupta, et al., Modeling of ascending/descending velocity of metal droplet emulsified in Pb-salt system, Metall. Mater. Trans. B 43 (4) (2012) 973-983. 

  13. S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng. 123 (3) (1996) 421-434. 

  14. R.H. Chen, Q.H. Cai, P.H. Zhang, et al., Three-dimensional numerical simulation of the HECLA-4 transient MCCI experiment by improved MPS method, Nucl. Eng. Des. 347 (2019) 95-107. 

  15. R.H. Chen, K.L. Guo, Y.S. Zhang, et al., Numerical analysis of the granular flow and heat transfer in the ADS granular spallation target, Nucl. Eng. Des. 330 (2018) 59-71. 

  16. R.H. Chen, Y.L. Li, K.L. Guo, et al., Numerical investigation on the dissolution kinetics of ZrO2 by molten zircaloy using MPS method, Nucl. Eng. Des. 319 (2017) 117-125. 

  17. R.H. Chen, L. Chen, K.L. Guo, et al., Numerical analysis of the melt behavior in a fuel support piece of the BWR by MPS, Ann. Nucl. Energy 102 (2017) 422-439. 

  18. R.H. Chen, C.H. Dong, K.L. Guo, et al., Current achievements on bubble dynamics analysis using MPS method, Prog. Nucl. Energy 118 (2020) 1-11. 

  19. H.Y. Yoon, S. Koshizuka, Y. Oka, A mesh-free numerical method for direct simulation of gas-liquid phase interface, Nucl. Sci. Eng. 133 (2) (1999) 192-200. 

  20. J. Liu, S. Koshizuka, Y. Oka, A hybrid particle-mesh method for viscous, incompressible, multiphase flows, J. Comput. Phys. 202 (1) (2005) 65-93. 

  21. W.X. Tian, Y. Ishiwatari, S. Ikejiri, et al., Numerical simulation on void bubble dynamics using moving particle semi-implicit method, Nucl. Eng. Des. 239 (11) (2009) 2382-2390. 

  22. W.X. Tian, Y. Ishiwatari, S. Ikejiri, et al., Numerical computation of thermally controlled steam bubble condensation using Moving Particle Semi-implicit (MPS) method, Ann. Nucl. Energy 37 (1) (2010) 5-15. 

  23. W.X. Tian, R.H. Chen, J.L. Zuo, et al., Numerical simulation on collapse of vapor bubble using particle method, Heat Transf. Eng. 35 (6-8) (2014) 753-763. 

  24. R.H. Chen, W.X. Tian, G.H. Su, et al., Numerical investigation on bubble dynamics during flow boiling using moving particle semi-implicit method, Nucl. Eng. Des. 240 (11) (2010) 3830-3840. 

  25. R.H. Chen, W.X. Tian, G.H. Su, et al., Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid, Chem. Eng. Sci. 66 (21) (2011) 5055-5063. 

  26. R.H. Chen, M.H. Zhang, K.L. Guo, et al., Numerical study of bubble rising and coalescence characteristics under flow pulsation based on particle method, Science and Technology of Nuclear Installations (2019) 2045751. 

  27. G.T. Duan, B. Chen, S. Koshizuka, et al., Stable multiphase moving particle semi-implicit method for incompressible interfacial flow, Comput. Methods Appl. Mech. Eng. 318 (2017) 636-666. 

  28. K.L. Guo, R.H. Chen, S.Z. Qiu, et al., An improved multiphase moving particle semi-implicit method in bubble rising simulations with large density ratios, Nucl. Eng. Des. 340 (2018) 370-387. 

  29. G.T. Duan, S. Koshizuka, B. Chen, A contoured continuum surface force model for particle methods, J. Comput. Phys. 298 (2015) 280-304. 

  30. A. Khayyer, H. Gotoh, A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method, Appl. Ocean Res. 32 (1) (2010) 124-131. 

  31. S. Natsui, H. Takai, T. Kumagai, et al., Stable mesh-free moving particle semi-implicit method for direct analysis of gas-liquid two-phase flow, Chem. Eng. Sci. 111 (2014) 286-298. 

  32. N. Shirakawa, H. Horie, Y. Yamamoto, et al., Analysis of the void distribution in a circular tube with the two-fluid particle interaction method, J. Nucl. Sci. Technol. 38 (6) (2001) 392-402. 

  33. N. Shirakawa, Y. Yamamoto, H. Horie, et al., Analysis of subcooled boiling with the two-fluid particle interaction method, J. Nucl. Sci. Technol. 40 (3) (2003) 125-135. 

  34. S. Natsui, H. Takai, T. Kumagai, et al., Multiphase particle simulation of gas bubble passing through liquid/liquid interfaces, Mater. Trans. 55 (11) (2014) 1707-1715. 

  35. S. Natsui, R. Nashimoto, H. Takai, et al., SPH simulations of the behavior of the interface between two immiscible liquid stirred by the movement of a gas bubble, Chem. Eng. Sci. 141 (2016) 342-355. 

  36. S. Hysing, S. Turek, D. Kuzmin, et al., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids 60 (11) (2009) 1259-1288. 

  37. X. Li, A. Yamaji, A numerical study of isotropic and anisotropic ablation in MCCI by MPS method, Prog. Nucl. Energy 90 (2016) 46-57. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로