$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구
A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia 원문보기

청정기술 = Clean technology, v.26 no.2, 2020년, pp.137 - 144  

조광희 (충남대학교 에너지과학기술대학원) ,  박지혜 (충남대학교 화학공학교육과) ,  (충남대학교 에너지과학기술대학원) ,  윤형철 (한국에너지기술연구원) ,  이광복 (충남대학교 화학공학교육과)

초록
AI-Helper 아이콘AI-Helper

저농도 암모니아의 재생 및 농축을 위하여 초음파 함침법으로 금속 첨착 활성탄을 제조하였다. 금속으로는 마그네슘과 구리를 선정하였고, 염화물(Cl-)과 질산염(NO3-) 전구체를 사용하여 활성탄 표면에 첨착하였다. 흡착제의 물리 및 화학적 특성은 TGA, BET 그리고 NH3-TPD를 통해 분석되었다. 암모니아 파과실험은 고정층 반응기를 사용하여 암모니아(1000 mg L-1 NH3, balanced N2)를 100 mL min-1으로 주입하였으며, 온도변동 흡착법(TSA)과 압력변동 흡착법(PSA, 0.3, 0.5, 0.7, 0.9 Mpa)에서 수행하였다. 암모니아의 흡착 및 탈착 성능은 NH3-TPD와 TSA 및 PSA 공정에서 AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC 순으로 나타났다. 그 중 MgCl2를 사용한 AC-Mg(Cl)은 TSA에서 평균 흡착량 2.138 mmol g-1을 나타내었다. 또한 PSA 0.9 Mpa에서 3.848 mmol g-1로 가장 높은 초기 흡착량을 나타내었다. 활성탄 표면에 금속이 첨착되면 물리흡착뿐만 아니라 화학흡착이 수반되어 흡착 및 탈착 성능이 증가하는 것을 확인하였다. 또한 흡착제는 반복적인 공정에도 안정적인 흡착 및 탈착 성능을 나타내어 TSA와 PSA 공정에서의 적용 가능성을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The ...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • [23] 연구팀의 후속 연구로 저농도 암모니아의 흡착 및 탈착 성능을 높이고 효과적인 재생 공정을 결정하기 위하여 수행하였다.
  • 따라서 연구자들은 활성탄 표면에 산 처리가 아닌 무기 금속을 첨착하여 흡착량을 높이는 연구를 시도하였다[16, 23,24].
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
PSA 공정는 어떠한 장단점이 있는가? TSA 공정은 흡착제를 재생하기 위하여 일정 온도까지 승온시켜 흡착된 기체를 탈착시킨 후 상온으로 온도를 다시 낮추어 재흡착을 반복해야 하는 복잡한 단계를 포함한다. 반면 PSA 공정은 압력을 조절하기 때문에 작동을 단순화 할 수 있어 시간을 단축시키지만 흡착제와 흡착질 사이의 결합이 강한 경우, 흡착질의 회수율이 낮은 장단점을 가지고 있다[25-29].
Haber-Bosch 공정은 어떠한 문제점이 있는가? 현재 대부분의 암모니아는 Haber-Bosch 공정을 통해 생산되며, 약 773K 이상의 고온과 15~30 MPa의 고압에서 수소와 질소가 Fe 촉매 기반에서 반응하여 생성된다[5, 6]. 이 공정은 다량의 이산화탄소 발생으로 인한 심각한 환경오염 및 높은 에너지 소비량으로 인해 이를 대체하는 친환경 공정 개발이 필요하다[7]. 그중 전기화학적 암모니아 합성(electrochemical ammonia synthesis)은 친환경적으로 암모니아를 생산하는 공정으로 최근 몇 년간 연구가 되고 있으며, 상압 및 373K 이하의 비교적 낮은 온도에서 물과 공기를 반응시켜 암모니아를 생산할 수 있는 장점이 있다[8, 9].
암모니아(NH3)는 어디에 쓰이는가? 암모니아(NH3)는 전 세계적으로 널리 생산되는 화학물질 중 하나로, 섬유, 플라스틱, 비료 등 여러 산업 분야에서 다양하게 사용된다[1-3]. 또한 메탄올은 수소 함량이 12.
질의응답 정보가 도움이 되었나요?

참고문헌 (36)

  1. Shipman, M. A., and Symes, M. D., "Recent Progress Towards the Electrosynthesis of Ammonia from Sustainable Resources," Catal. Today, 286, 57-68 (2017). 

  2. Giddey, S., Badwal, S. P. S., and Kulkarni, A., "Review of Electrochemical Ammonia Production Technologies and Materials," Int. J. Hydrogen Energy, 38(34), 14576-14594 (2013). 

  3. Avery, W. H., "A Role for Ammonia in the Hydrogen Economy," Int. J. Hydrogen Energy, 13(12), 761-773 (1988). 

  4. Lan, R., Irvine, J. T., and Tao, S., "Ammonia and Related Chemicals as Potential Indirect Hydrogen Storage Materials," Int. J. Hydrogen Energy, 37(2), 1482-1494 (2012). 

  5. Kozuch, S., and Shaik, S., "Kinetic-Quantum Chemical Model for Catalytic Cycles: the Haber-Bosch Process and the Effect of Reagent Concentration," J. Phys. Chem. A, 112(26), 6032-6041 (2008). 

  6. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W., "How a Century of Ammonia Synthesis Changed the World," Nat. Geosci., 1(10), 636-639 (2008). 

  7. Kim, K., Lee, S. J., Kim, D. Y., Yoo, C. Y., Choi, J. W., Kim, J. N., and Han, J. I., "Electrochemical Synthesis of Ammonia from Water and Nitrogen: A Lithium-Mediated Approach Using Lithium-Ion Conducting Glass Ceramics," ChemSusChem, 11(1), 120-124 (2018). 

  8. Chen, S., Perathoner, S., Ampelli, C., Mebrahtu, C., Su, D., and Centi, G., "Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst," Angew. Chem. Int. Ed. Engl., 56(10), 2699-2703 (2017). 

  9. Jeong, E. Y., Yoo, C. Y., Jung, C. H., Park, J. H., Park, Y. C., Kim, J. N., and Yoon, H. C., "Electrochemical Ammonia Synthesis Mediated by Titanocene Dichloride in Aqueous Electrolytes under Ambient Conditions," ACS Sustain. Chem. Eng., 5(11), 9662-9666 (2017). 

  10. Kordali, V., Kyriacou, G., and Lambrou, C., "Electrochemical Synthesis of Ammonia at Atmospheric Pressure and Low Temperature in a Solid Polymer Electrolyte Cell," Chem. Commun., (17), 1673-1674 (2000). 

  11. Yun, D. S., Joo, J. H., Yu, J. H., Yoon, H. C., Kim, J. N., and Yoo, C. Y., "Electrochemical Ammonia Synthesis from Steam and Nitrogen using Proton Conducting Yttrium Doped Barium Zirconate Electrolyte with Silver, Platinum, and Lanthanum Strontium Cobalt Ferrite Electrocatalyst," J. Power Sources, 284, 245-251 (2015). 

  12. Kyriakou, V., Garagounis, I., Vasileiou, E., Vourros, A., and Stoukides, M., "Progress in the Electrochemical Synthesis of Ammonia," Catal. Today, 286, 2-13 (2017). 

  13. Garagounis, I., Kyriakou, V., Skodra, A., Vasileiou, E., and Stoukides, M., "Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells," Front. Energy Res., 2(1), 1-10 (2014). 

  14. Amar, I. A., Lan, R., Petit, C. T., and Tao, S., "Solid-State Electrochemical Synthesis of Ammonia: a Review," J. Solid State Electrochem., 15(9), 1845 (2011). 

  15. Rieth, A. J., and Dinca, M., "Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption," J. Am. Chem. Soc., 140(9), 3461-3466 (2018). 

  16. Bandosz, T. J., and Petit, C., "On the Reactive Adsorption of Ammonia on Activated Carbons Modified by Impregnation with Inorganic Compounds," J. Colloid Interface Sci., 338(2), 329-345 (2009). 

  17. Oktavitri, N. I., Purnobasuki, H., Kuncoro, E. P., and Purnamasari, I., "Ammonia Removal Using Coconut Shell Based Adsorbent: Effect of Carbonization Duration and Contact Time," IPTEK Journal of Proceedings Series, 3(4), 26-32 (2017). 

  18. Goncalves, M., Sanchez-Garcia, L., Oliveira Jardim, E. D., Silvestre-Albero, J., and Rodriguez-Reinoso, F., "Ammonia Removal using Activated Carbons: Effect of the Surface Chemistry in Dry and Moist Conditions," Environ. Sci. Technol., 45(24), 10605-10610 (2011). 

  19. Huang, C. C., Li, H. S., and Chen, C. H., "Effect of Surface Acidic Oxides of Activated Carbon on Adsorption of Ammonia," J. Hazard. Mater., 159(2-3), 523-527 (2008). 

  20. Khabzina, Y., and Farrusseng, D., "Unravelling Ammonia Adsorption Mechanisms of Adsorbents in Humid Conditions," Microporous Mesoporous Mater., 265, 143-148 (2018). 

  21. Somy, A., Mehrnia, M. R., Amrei, H. D., Ghanizadeh, A., and Safari, M., "Adsorption of Carbon Dioxide using Impregnated Activated Carbon Promoted by Zinc," Int. J. Greenhouse Gas Control, 3(3), 249-254 (2009). 

  22. Huang, C. C., Chen, H. M., Chen, C. H., and Huang, J. C., "Effect of Surface Oxides on Hydrogen Storage of Activated Carbon," Sep. Purif. Technol., 70(3), 291-295 (2010). 

  23. Park, J. H., Hwang, R. H., Yoon, H. C., and Yi, K. B., "Effects of Metal Loading on Activated Carbon on Its Adsorption and Desorption Characteristics," J. Ind. Eng. Chem., 74, 199-207 (2019). 

  24. Park, J. H., Rasheed, H., Cho, K. H., Yoon, H. C., and Yi, K. B., "Effects of Magnesium Loading on Ammonia Capacity and Thermal Stability of Activated Carbons," Korean J. Chem. Eng., 37(6), 1029-1035 (2020). 

  25. Mehdipour, M., and Fatemi, S., "Modeling of a PSA-TSA Process for Separation of $CH_4$ from $C_2$ Products of OCM Reaction," Sep. Sci. Technol., 47(8), 1199-1212 (2012). 

  26. Smith, A. R., and Klosek, J., "A Review of Air Separation Technologies and Their Integration with Energy Conversion Processes," Fuel Process. Technol., 70(2), 115-134 (2001). 

  27. Loy, Y. Y., Lee, X. L., and Rangaiah, G. P., "Bioethanol Recovery and Purification using Extractive Dividing-Wall Column and Pressure Swing Adsorption: An Economic Comparison after Heat Integration and Optimization," Sep. Purif. Technol., 149, 413-427 (2015). 

  28. Rege, S. U., Yang, R. T., Qian, K., and Buzanowski, M. A., "Air-Prepurification by Pressure Swing Adsorption using Single/Layered Beds," Chem. Eng. Sci., 56(8), 2745-2759 (2001). 

  29. Ho, M. T., Allinson, G. W., and Wiley, D. E., "Reducing the Cost of $CO_2$ Capture from Flue Gases using Pressure Swing Adsorption," Ind. Eng. Chem. Res., 47(14), 4883-4890 (2008). 

  30. Al Amer, A. M., Laoui, T., Abbas, A., Al-Aqeeli, N., Patel, F., Khraisheh, M., Atieh, M. A., and Hilal, N., "Fabrication and Antifouling Behaviour of a Carbon Nanotube Membrane," Mater. Des., 89, 549-558 (2016). 

  31. Park, J. H., Baek, J. H., Jo, G. H., Rasheed, H. U., and YI, K. B., "Catalytic Characteristic of Water-Treated Cu/ZnO/MgO/ $Al_2O_3$ Catalyst for LT-WGS Reaction," Trans. Korean Hydrog. New Energy Soc., 30(2), 95-102 (2019). 

  32. Jeong, J. M., Park, J. H., Baek, J. H., Hwang, R. H., Jeon, S. G., and Yi, K. B., "Effect of Acid Treatment of Fe-BEA Zeolite on Catalytic $N_2O$ Conversion," Korean J. Chem. Eng., 34(1), 81-86 (2017). 

  33. Wu, Z., Jin, R., Liu, Y., and Wang, H., "Ceria Modified $MnO_x/TiO_2$ as a Superior Catalyst for NO Reduction with NH3 at Low-Temperature," Catal. Commun., 9(13), 2217-2220 (2008). 

  34. Liu, C. Y., and Aika, K. I., "Ammonia Absorption on Alkaline Earth Halides as Ammonia Separation and Storage Procedure," Bull. Chem. Soc. Jpn., 77(1), 123-131 (2004). 

  35. Elmoe, T. D., Sorensen, R. Z., Quaade, U., Christensen, C. H., Norskov, J. K., and Johannessen, T., "A High-Density Ammonia Storage/Delivery System Based on $Mg(NH_3)_6Cl_2$ for SCR-DeNOx in Vehicles," Chem. Eng. Sci., 8(61), 2618-2625 (2006). 

  36. Darchen, A., Drissi-daoudi, R., and Irzho, A., "Electrochemical Investigations of Copper Etching by $Cu(NH_3)_4Cl_2$ in Ammoniacal Solutions," J. Appl. Electrochem., 27(4), 448-454 (1997). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로