$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식용 코팅 및 허들기술이 수산물의 품질 유지와 저장성 연장에 미치는 영향

The Effects of Edible Coating and Hurdle-Technology on Quality Maintenance and Shelf-Life Extension of Seafood

한국식품위생안전성학회지 = Journal of food hygiene and safety, v.35 no.3, 2020년, pp.205 - 212  

백지혜 (국민대학교 식품영양학과) ,  이소영 (국민대학교 식품영양학과) ,  오세욱 (국민대학교 식품영양학과)

초록
AI-Helper 아이콘AI-Helper

본 논문은 수산물에 사용되는 식용 코팅의 다양한 천연성분에 대한 소재 및 특성에 대하여 조사하였으며, 화학적 항균 물질 및 항산화제와 물리적 살균 기술을 병합한 허들 기술(hurdle technology)에 대하여 서술하였다. 다양한 원인으로 인한 식중독 사고가 빈번히 발생하고 있으며 주된 원인은 오염된 식품의 섭취와 관련이 있다. 특히, 식품 중에서도 수산물은 수분함량이 많고 미생물에 오염되기 쉽기 때문에 저장 기한이 짧다. 이에 대한 해결방안으로 여러 가지 대안들이 적용되고 있는데, 가식성을 가지고 독성이 없는 장점을 가진 식용 코팅이 주목을 받고 있다. 식용 코팅은 미생물의 성장을 억제하고 수분 손실을 지연시킴으로써 수산물의 품질을 유지할 수가 있다. 또한 항균 물질 및 항산화제를 첨가하거나 물리적인 살균 기술과도 병합할 수 있다. 하지만 식용 코팅과의 병합 처리 기술이 소수 보고되고 있어 다양한 허들 기술에 대한 연구가 필요하다.

Abstract AI-Helper 아이콘AI-Helper

Foodborne diseases occur frequently and have various being related to the intake of contaminated foods. Seafood products are susceptible to contamination due to higher water content and microorganisms, which combine to give them a short shelf-life. Various approaches have been applied to overcome th...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이에 따라 본 연구는 수산물에 사용되는 식용 코팅의 성분에 대한 특성 및 응용에 대하여 조사하였으며 또한 코팅에 화학적 항균 물질 및 항산화제와 물리적 살균 기술을 병합한 허들 기술(hurdle technology)에 대하여 분석 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
식품은 가공, 유통, 저장 등과 같은 과정에서 무엇에 오염될 수 있는가? 식품은 생산단계에서 분뇨 퇴비, 야생동물 및 가축의 분변, 감염된 근로자, 용기 및 도구 등에 오염될 수 있다2). 또한, 가공, 유통, 저장 등과 같은 과정에서 Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes와 같은 병원성 미생물에 의한 오염이 발생할 수 있으므로, 병원성 미생물을 제어하는 것이 식품의 품질과 안전성을 유지 하는데 중요하다3-5).
식품은 생산단계에서 무엇에 의해 오염될 수 있는가? 식중독 발생은 규모 면에서도 집단화와 대형화되고 있는 실정이며, 오염된 식품 섭취와 밀접한 관련을 가진다1). 식품은 생산단계에서 분뇨 퇴비, 야생동물 및 가축의 분변, 감염된 근로자, 용기 및 도구 등에 오염될 수 있다2). 또한, 가공, 유통, 저장 등과 같은 과정에서 Escherichia coli O157:H7, Salmonella spp.
식용 코팅의 장점은? 이에 따라 냉장 또는 냉동으로 저장되는 수산물의 품질을 유지하기 위해 물리적인 살균 방법, 고농도의 CO2 사용, 합성 화합물을 사용하는 등 오염과 부패를 억제할 수 있는 다양한 연구들이 진행되었다8-11). 합성 화합물의 사용은 저장 기간 중 수산물의 품질을 유지하는 데 효과적일 수 있지만 잠재적인 독성으로 인해 제한적인 반면에, 가식성이 있으면서 독성이 없는 장점을 가지는 식용 코팅에 대한 관심이 계속적으로 높아지고 있다12-15).
질의응답 정보가 도움이 되었나요?

참고문헌 (73)

  1. Kwun, J.W., Lee, C.H., Trends of recent food-borne disease outbreaks in Korea. J. Korean Med. Assoc., 50, 573-581 (2007). 

  2. Oliveira, M., Usall, J., Vinas, I., Solsona, C., Abadias, M., Transfer of Listeria innocua from contaminated compost and irrigation water to lettuce leaves. Int. J. Food Microbiol., 28, 590-596 (2011). 

  3. Rahman, S. M.E., Ding, T., Oh, D.H., Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control, 21, 1383-1387 (2010). 

  4. Back, K.H., Ha, J.W., Kang, D.H., Effect of hydrogen peroxide vapor treatment for inactivating Salmonella Typhimurium, Escherichia coli O157: H7 and Listeria monocytogenes on organic fresh lettuce. Food Control, 44, 78-85 (2014). 

  5. Sagong, H.G., Lee, S.Y., Chang, P.S., Heu, S., Ryu, S., Choi, Y.J., Kang, D.H., Combined effect of ultrasound and organic acids to reduce Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh lettuce. Int. J. Food Microbiol., 145, 287-292 (2011). 

  6. Park, S.K., Kim, M.J., Effects of changing age structure of population on seafood consumption. Master's Thesis, University of Pukyong, Busan, Korea (2008). 

  7. Maqsood, S., Benjakul, S., Synergistic effect of tannic acid and modified atmospheric packaging on the prevention of lipid oxidation and quality losses of refrigerated striped catfish slices. Food Chem., 121, 29-38 (2010). 

  8. Rodriguez-Turienzo, L., Cobos, A., Moreno, V., Caride, A., Vieites, J.M., Diaz, O., Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chem., 128, 187-194 (2011). 

  9. Motalebi, A.A., Seyfzadeh, M., Effects of whey protein edible coating on bacterial, chemical and sensory characteristics of frozen common Kilka (Clupeonellia delitula). Iran J. Fish Sci., 11, 132-144 (2012). 

  10. Barnett, H.J., Stone, F.E., Roberts, G.C., Hunter, P.J., Nelson, R.W., Kwok, J., A study in the use of a high concentration of $CO_2$ in a modified atmosphere to preserve fresh Salmon. Mar. Fish. Rev., 44, 7-11 (1982). 

  11. Josewin, S.W., Ghate, V., Kim, M.J., Yuk, H.G., Antibacterial effect of 460 nm light-emitting diode in combination with riboflavin against Listeria monocytogenes on smoked salmon. Food Control, 84, 354-361 (2018). 

  12. Raghav, P.K., Agarwal, N., Saini, M., Edible coating of fruits and vegetables: A review. Int. J. Sci. Res. Mod. Educ., 1, 188-204 (2016). 

  13. Concha-Meyer, A., Schobitz, R., Brito, C., Fuentes, R., Lactic acid bacteria in an alginate film inhibit Listeria monocytogenes growth on smoked salmon. Food Control, 22(3-4), 485-489 (2011). 

  14. Kong, K.J.W., Alcicek, Z., Balaban, M.O., Effects of dry brining, liquid smoking and high-pressure treatment on the physical properties of aquacultured King salmon (Oncorhynchus tshawytscha) during refrigerated storage. J. Agric. Food Sci., 95, 708-714 (2015). 

  15. Ahmad, M., Benjakul, S., Sumpavapol, P., Nirmal, N.P., Quality changes of sea bass slices wrapped with gelatin film incorporated with lemongrass essential oil. Int. J. Food Microbiol., 155, 171-178 (2012). 

  16. Dehghani, S., Hosseini, S.V., Regenstein, J.M., Edible films and coatings in seafood preservation: A review. Food Chem., 240, 505-513 (2018). 

  17. Siripatrawan, U., Harte, B.R., Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll., 24, 770-775 (2010). 

  18. Ouattara, B., Sabato, S.F., Lacroix, M., Combined effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaeus spp.). Int. J. Food Microbiol., 68, 1-9 (2001). 

  19. Kim, J.H., Hong, W.S., Oh, S.W., Effect of layer-by-layer antimicrobial edible coating of alginate and chitosan with grapefruit seed extract for shelf-life extension of shrimp (Litopenaeus vannamei) stored at $4^{\circ}C$ . Int. J. Biol. Macromol., 120, 1468-1473 (2018). 

  20. Olatunde, O.O., Benjakul, S., Natural preservatives for extending the shelf-life of seafood: a revisit. Compr. Rev. Food Sci. Food Saf., 17, 1595-1612 (2018). 

  21. Brasil, I.M., Gomes, C., Puerta-Gomez, A., Castell-Perez, M.E., & Moreira, R.G., Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT Food Sci. Technol., 47, 39-45 (2012). 

  22. Volpe, M.G., Siano, F., Paolucci, M., Sacco, A., Sorrentino, A., Malinconico, M., Varricchio, E. Active edible coating effectiveness in shelf-life enhancement of trout (Oncorhynchusmykiss) fillets. LWT Food Sci. Technol., 60, 615-622 (2015). 

  23. Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J., Thom, D., Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett., 32, 195-198 (1973). 

  24. Aloui, H., Khwaldia, K., Sanchez-Gonzalez, L., Muneret, L., Jeandel, C., Hamdi, M., Desobry, S., Alginate coatings containing grapefruit essential oil or grapefruit seed extract for grapes preservation. Int. J. Food Sci. Technol., 49, 952-959 (2014). 

  25. Lu, F., Liu, D., Ye, X., Wei, Y., Liu, F., Alginate-calcium coating incorporating nisin and EDTA maintains the quality of fresh northern snakehead (Channa argus) fillets stored at $4^{\circ}C$ . J. Sci. Food Agric., 89, 848-854 (2009). 

  26. Kester, J.J., Fennema, O.R., Edible films and coatings: A review. Food Technol., 40, 47-59 (1986) 

  27. Neetoo, H., Ye, M., Chen, H., Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. Int. J. Food Microbiol., 136, 326-331 (2010). 

  28. Costa, C., Conte, A., Del Nobile, M.A., Effective preservation techniques to prolong the shelf life of ready to eat oysters. J. Sci. Food Agric., 94, 2661-2667 (2014). 

  29. Li, T., Li, J., Hu, W., Li, X., Quality enhancement in refriger ated red drum (Sciaenops ocellatus) fillets using chitosan coatings containing natural preservatives. Food Chem., 138, 821-826 (2013). 

  30. Poverenov, E., Danino, S., Horev, B., Granit, R., Vinokur, Y., Rodov, V., Layer-by-layer electrostatic deposition of edible coating on fresh cut melon model: Anticipated and unexpected effects of alginate-chitosan combination. Food Bioproc. Tech., 7, 1424-1432 (2014). 

  31. Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y., Chi, Y., Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chem., 115, 66-70 (2009). 

  32. Ojagh, S.M., Rezaei, M., Razavi, S.H., Hosseini, S.M.H., Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem., 120, 193-198 (2010). 

  33. Necas, J., Bartosikova, L., Carrageenan: a review. J. Vet. Med. Educ., 58, 187-205 (2013). 

  34. Pavlath, A.E., Orts, W., 2009. Edible films and coatings: why, what, and how?, New York, NY, USA, pp. 1-23. 

  35. Moraes, K.S.D., Fagundes, C., Melo, M.C., Andreani, P., Monteiro, A.R., Conservation of Williams pear using edible coating with alginate and carrageenan. Food Sci. Technol (Campinas)., 32, 679-684 (2012). 

  36. Hamzah, H.M., Osman, A., Tan, C.P., Ghazali, F.M., Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika). Postharvest Biol. Technol., 75, 142-146 (2013). 

  37. McNamee, B.F., O'Riorda, E.D., O'Sullivan, M., Effect of partial replacement of gum arabic with carbohydrates on its microencapsulation properties. J. Agric. Food Chem., 49, 3385-3388 (2001). 

  38. Ye, A., Edwards, P.J., Gilliland, J., Jameson, G.B., Singh, H., Temperature-dependent complexation between sodium caseinate and gum arabic. Food Hydrocoll., 26, 82-88 (2012). 

  39. Cai, L., Wu, X., Dong, Z., Li, X., Yi, S., Li, J., Physicochemical responses and quality changes of red sea bream (Pagrosomus major) to gum arabic coating enriched with ergothioneine treatment during refrigerated storage. Food Chem., 160, 82-89 (2014). 

  40. Gennadios, A., McHugh, T.H., Weller, C.L., Krochta, J.M., 1994. Edible coating films based on proteins. Edible coatings and films to improve food quality, Lancaster, PA, USA, pp. 201-227. 

  41. Mate, J.I., Krochta, J.M., Oxygen uptake model for uncoated and coated peanuts. J. Food Eng., 35, 299-312 (1998). 

  42. Guilbert, S., Gontard, N., Cuq, B., Technology and applications of edible protective films. Packag. Tech. Sci., 8, 339-346 (1995). 

  43. Cosler, H.B., Prevention of staleness, rancidity in nut meats and peanuts. Peanuts J. Nut. World, 37, 10-15 (1958). 

  44. Wang, Z., Hu, S., Gao, Y., Ye, C., Wang, H., Effect of collagen-lysozyme coating on fresh-salmon fillets preservation. LWT Food Sci. Technol., 75, 59-64 (2017). 

  45. McHugh, T.H., Protein-lipid interactions in edible films and coatings. Mol. Nutr. Food Res., 44, 148-151 (2000). 

  46. De Azeredo, H.M.C., 2012, Edible coatings, Boca Raton, FL, USA, p. 345. 

  47. Chamanara, V., Shabanpour, B., Gorgin, S., Khomeiri, M., An investigation on characteristics of rainbow trout coated using chitosan assisted with thyme essential oil. Int. J. Biol. Macromol., 50, 540-544 (2012). 

  48. Stuchell, Y.M., Krochta, J.M., Edible coatings on frozen king salmon: Effect of whey protein isolate and acetylated monoglycerides on moisture loss and lipid oxidation. J. Food Sci., 60, 28-31 (1995). 

  49. Song, Y., Liu, L., Shen, H., You, J., Luo, Y., Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama amblycephala). Food Control, 22, 608-615 (2011). 

  50. Datta, S., Janes, M.E., Xue, Q.G., Losso, J., La Peyre, J.F., Control of Listeria monocytogenes and Salmonella anatum on the surface of smoked salmon coated with calcium alginate coating containing oyster lysozyme and nisin. J. Food Sci., 73, M67-M71 (2008). 

  51. Nawapat, D., Thawien, W., Effect of UV-treatment on the properties of biodegradable rice starch films. Food Res. Int., 20, 1313 (2013). 

  52. Leistner, L., Food preservation by combined methods. Food Res. Int., 25, 151-158 (1992). 

  53. Farkas, J., Combination of irradiation with mild heat treatment. Food Control, 1, 223-229 (1990). 

  54. Lacroix, M., Ouattara, B., Combined industrial processes with irradiation to assure innocuity and preservation of food products-a review. Food Res. Int., 33, 719-724 (2000). 

  55. Lopez-Gonzalez, V., Murano, P.S., Brennan, R.E., Murano, E.A., Influence of various commercial packaging conditions on survival of Escherichia coli O157: H7 to irradiation by electron beam versus gamma rays. J. Food Prot., 62, 10-15 (1999). 

  56. Keklik, N.M., Krishnamurthy, K., Demirci, A., 2012. Microbial decontamination of food by ultraviolet (UV) and pulsed UV light, London, UK, pp. 344-369. 

  57. Bialka, K.L., Demirci, A., Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157: H7 and Salmonella spp. on raspberries and strawberries. J. Food Sci., 73, M201-M207 (2008). 

  58. Ozer, N.P., Demirci, A., Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. Int. J. Food Sci. Technol., 41, 354-360 (2006). 

  59. Lin, M.G., Lasekan, O., Saari, N., Khairunniza-Bejo, S., The effect of the application of edible coatings on or before ultraviolet treatment on postharvested longan fruits. J. Food Qual. 2017, 1-11 (2017). 

  60. Ghate, V., Kumar, A., Zhou, W., Yuk, H.G., Irradiance and temperature influence the bactericidal effect of 460-nanometer light-emitting diodes on Salmonella in orange juice. J. Food Prot., 79, 553-560 (2016). 

  61. Ghate, V., Kumar, A., Kim, M.J., Bang, W.S., Zhou, W., Yuk, H.G., Effect of 460 nm light emitting diode illumination on survival of Salmonella spp. on fresh-cut pineapples at different irradiances and temperatures. J. Food Eng., 196, 130-138 (2017). 

  62. Kim, M.J., Bang, W.S., Yuk, H.G., $405{\pm}5$ nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration. Food Microbiol., 62, 124-132 (2017). 

  63. Kim, M.J., Tang, C.H., Bang, W.S., Yuk, H.G., Antibacterial effect of $405{\pm}5$ nm light emitting diode illumination against Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. Int. J. Food Microbiol., 244, 82-89 (2017). 

  64. Sommers, C., Gunther IV, N.W., Sheen, S., Inactivation of Salmonella spp., pathogenic Escherichia coli, Staphylococcus spp., or Listeria monocytogenes in chicken purge or skin using a 405-nm LED array. Food Microbiol., 64, 135-138 (2017). 

  65. Demidova, T.N., Hamblin, M.R., Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob. Agents Chemother., 49, 2329-2335 (2005). 

  66. Smith, J., Burritt, D., Bannister, P., Ultraviolet-B radiation leads to a reduction in free polyamines in Phaseolus vulgaris L. Plant Growth Regul., 35, 289-294 (2001). 

  67. Luksiene, Z., Zukauskas, A., Prospects of photosensitization in control of pathogenic and harmful micro-organisms. J. Appl. Microbiol., 107, 1415-1424 (2009). 

  68. Luksiene, Z., Paskeviciute, E., Novel approach to the microbial decontamination of strawberries: chlorophyllin based photosensitization. J. Appl. Microbiol., 110, 1274-1283 (2011). 

  69. Lopez-Carballo, G., Hernandez-Munoz, P., Gavara, R., Ocio, M.J., Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products. Int. J. Food Microbiol., 126, 65-70 (2008). 

  70. Abdipour, M., Malekhossini, P.S., Hosseinifarahi, M., Radi, M., Integration of UV irradiation and chitosan coating: A powerful treatment for maintaining the postharvest quality of sweet cherry fruit. Sci. Hortic., 264, 109197 (2020). 

  71. Arroyo, B.J., Bezerra, A.C., Oliveira, L.L., Arroyo, S.J., de Melo, E. A., Santos, A.M.P., Antimicrobial active edible coating of alginate and chitosan add ZnO nanoparticles applied in guavas (Psidium guajava L.). Food Chem., 309, 125566 (2020). 

  72. Zambrano-Zaragoza, M.L., Quintanar-Guerrero, D., Del Real, A., Gonzalez-Reza, R.M., Cornejo-Villegas, M.A., Gutierrez-Cortez, E., Effect of Nano-edible coating based on beeswax solid lipid nanoparticles on Strawberry's preservation. Coatings 2020, 10(3), 253 (2020). 

  73. Dai, L., Zhang, J., Cheng, F., Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chem., 311, 125891 (2020). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트