$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

방염제의 도포량과 침지시간 차이에 따른 목재제품의 방염성능
Flame Retardancy of Wood Products by Spreading Concentration and Impregnation Time of Flame Retardant 원문보기

목재공학 = Journal of the Korean wood science and technology, v.48 no.4, 2020년, pp.417 - 430  

PARK, Sohyun (Division of Wood Utilization, Department of forest Products, National Institute of Forest Science) ,  HAN, Yeonjung (Division of Wood Utilization, Department of forest Products, National Institute of Forest Science) ,  SON, Dong Won (Division of Wood Utilization, Department of forest Products, National Institute of Forest Science)

초록
AI-Helper 아이콘AI-Helper

4종의 판상형 목재제품의 방염제 도포량과 침지시간에 따른 방염성능을 분석하기 위하여 소방청의 방염성능기준에 따라 목재제품의 탄화길이와 탄화면적을 측정하였다. 잣나무 합판, 낙엽송 합판, 편백 판재, 타공처리된 자작나무 합판에 자체 개발된 방염제를 각각 300, 500 g/㎡씩 도포하고 방염처리되지 않은 시험편과 비교하였다. 일반적으로 방염제의 도포량이 증가함에 따라 탄화길이와 탄화면적이 감소하여 방염성능이 증가하는 경향을 나타냈으나, 낙엽송 합판을 제외하고 탄화길이와 탄화면적의 감소량이 크지 않았다. 타공처리된 자작나무 합판의 침지시간에 따른 방염성능은 60분의 침지시간까지 양의 상관관계를 나타냈으나, 그 이후 점차 완만해지는 경향을 보였다. 방염제의 도포량과 침지시간에 따른 목재제품의 방염성능은 추후 방염성능 기준에 맞는 불연·준불연 목재의 생산을 위한 기초자료로 이용될 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

The flame retardancy, such as carbonized length and area, of four plank type wood products by the spreading concentration and impregnation time of flame retardant were measured according to standard of the Nation Fire Agency in Republic of Korea. To measure the flame retardancy, Korean pine plywood,...

주제어

표/그림 (10)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • , 2017). It was determined to apply 300 g/m2 and 500 g/m2 to the Korean pine plywood, Japanese larch plywood, and Japanese cypress planks and 150 g/m2 , 300 g/m2 , and 500 g/m2 to the perforated birch plywood boards. The application method involved brushing the flame retardant until the surfaces of the specimens were sufficiently soaked, drying them for 24 hours at a temperature of 23 °C and a 50% humidity, reapplying the agent, and repeating the process three times.
  • However, different wood products and tree species shows different effect of the improvement in the flame retardant’s performance as the spreading concentration increases, implying the necessity of additional study on the species of trees. Since the perforated birch plywood boards with 150 g/m2 applied exceeded the standards, a study should be conducted to verify the cost-effective spreading concentration that passes the flame retardant performance standards with 300 g/m2 or less for the industrial use of flame retardants.
  • The application method involved brushing the flame retardant until the surfaces of the specimens were sufficiently soaked, drying them for 24 hours at a temperature of 23 °C and a 50% humidity, reapplying the agent, and repeating the process three times.
  • The manufactured specimens were humidified for 24 hours until they reached constant weight in a thermo-hygrostat under the conditions of 23°C and 50% humidity and retained for 2 hours in a desiccator with silica gel in it based on the flame retardancy standards before being used for testing.
  • Perforated birch plywood boards were selected because it is often used as a high-end finishing material and has superior strength and durability, and research was published to develop mass-productive objects through laser processing (Song, 2011). The test specimens were manufactured in sufficient quantities to repeat each process three times including untreated control groups. The manufactured specimens were humidified for 24 hours until they reached constant weight in a thermo-hygrostat under the conditions of 23°C and 50% humidity and retained for 2 hours in a desiccator with silica gel in it based on the flame retardancy standards before being used for testing.
  • This research evaluated flame retardancy depending on the spreading concentration and impregnation time of phosphorus flame retardant by measuring carbonization length and area on four types of wooden materials based on the flame retardancy through the 45° Meckel’s burner method.

대상 데이터

  • The dimensions of the test specimens were 190 mm (width) × 290 mm (height) × 10 mm (thickness) as specified in the 45° Meckel’s burner method based on the flame retardancy standards of the National Fire Agency.
본문요약 정보가 도움이 되었나요?

참고문헌 (24)

  1. Cha, J.M., Hyun, S.H., Kim, I.B., Yoon, M.O. 2011. A study on the flame retardant performance of mdf wood according to flame retardant treatment method. Journal of Korean Institute of Fire Science and Engineering 25(6): 146-155. 

  2. Choi, J.M., Ro, H.S., Jin, Y.H. 2011. A study on combustion characteristics of flame retardant treated Pinus Densiflora. Journal of Korean Institute of Fire Science 25(3): 244-251. 

  3. Dobele, G., Urbanovich, I., Zhurins, A., Kampars, V., Meier, D. 2007. Application of analytical pyrolysis for wood fire protection control. Journal of Analytical and Applied Pyrolysis 79(1-2): 47-51. 

  4. He, X., Li, X.J., Zhong, Z., Mou, Q., Yan, Y., Chen, H., Liu, L. 2016. Effectiveness of impregnation of ammonium polyphosphate fire retardant in poplar wood using microwave heating. Fire and materials 40(6): 818-825. 

  5. Ho, C.S., Seong, H.G. 2004. Thermal degradation of wood treated with guanidine compounds in air flammability study. Journal of Thermal Analysis and Calorimetry 75: 221-232. 

  6. Kim, C.G., Park, C.W., Yoon, T.H., Lim, N.G. 2013. Characteristics of flame retardant and mothproof conversation of Microwave heated wood. Journal of the Korean Wood Science and Technology 41(3): 234-246. 

  7. Kim, D.W., Kim, C.W., Han, S.H., Chung, Y.J., Han, G.S. 2014. Flame retardant treatment’s effects and detection method on wooden buildings’ pigment layer (Dan-cheong). Journal of the Korean Wood Science and Technology 42(4): 393-406. 

  8. Kim, H.W., Jung G.S., Jung R.H., Lee, B.K. 2012. Development of fire proof clothes for the multiplex available premises fire. Journal of Korea Society and Harzard Mitigation. 12(3): 211-215. 

  9. Kim, I,B., Hyun, S.H. 2009. A study on the flame retardant performance and toxicity of the painting wood painted with flame retardant solution. Journal of Korean Institute of Fire Science 23(5): 66-71. 

  10. Lim, B.A., Kim, J.C., Kim, S.Y., Son, Y.S., Kim, K.H., Sun, Y.Y., Kang, Y.S. 2007. Variations of VOC emission rates from indoor wallboard with elapsed time. Proceeding of the 45th Meeting of Korean Society for Atmospheric Environment. 

  11. Lim, N.G., Her, J.W., Park, C.W. 2008. An experimental study on flame resistant performance by flame resistant method and agents. Journal of Korean Institute of Building Construction 8(6): 117-122. 

  12. Min, S.H., Sun, J.S., Kim, S.C., Choi, Y.M., Lee, S.K. 2012 A study on fire performance evaluation of EIFS on anti-flaming finish by cone calorimeter test. Journal of Korean Institute of Fire Science 26(3): 106-111. 

  13. Park, H.J., Wen, M., Cheon, S.H., Hwang, J.W., Oh, S.W. 2012. Flame retardnat performance of wood treated with flame retardant chemicals. Journal of the Korean Wood Science and Technology 40(5): 311-318. 

  14. Park, J.E., Yoon, S.M., Choi, Y.S., Hwang, W.J., Son, D.W. 2018. Performance evaluation of domestic flame retardant perforated plate, JunJu, Republic of Korea, Proc. of 2018 the Korean society of wood science and technology annual meeting, April, 1: 68-68. 

  15. Park, S., Han, Y., Son, D.W. 2019. Analysis of combustion characteristics of five domestic species. Journal of the Korea Furniture Society 30(4): 303-311. 

  16. Park. C.W., Her, J.W., Lim, N.G. 2011. The liquid flame proofing agent's permeating effect of wood using microwave. Journal of the Korea Institute of Building Construction 11(3): 256-264. 

  17. Seo, H.J., Kang, M.R., Park, J.E., Son, D.W. 2016. Combustion characteristics of useful imported woods. Journal of the Korean Wood Science and Technology 44(1): 19-29. 

  18. Seo, H.J., Kang, M.R., Son, D.W. 2015. Combustion properties of woods for indoor use (II). Journal of the Korean Wood Science and Technology 43(4): 478-485. 

  19. Seo, H.J., Kim, N.K., Jo, J.M., Lee, M.C. 2017. Analysis on the Flame-Retardant Performance and Hazards in Gas Products for Water-Soluble Flame-Retardant- Chemicals Treated Woods. Journal of Korea Society and Harzard Mitigation 17(4): 173-179. 

  20. Son, D.W., Han, G.S. 2014. Evlauation methods of flame retarants for wooden cultural properties. Journal of the Korean Wood Science and Technology 42(5): 590-596. 

  21. Son, Y.S. 1988. Trace back on the past of flame retardant treatment and countermeasure in the Korea. Journal of Chemistry of Fire Prevention 2(2): 31-41. 

  22. Song, Y.J., Jung, H.J., Lee, I.H., Hong, S.I. 2015. Performance evaluation of bending strength of curved composite glulams made of Korean white pine. Journal of the Korean Wood Science and Technology 43(4): 463-469. 

  23. Song, Y.S. 2011. A study on the furniture design applied with the characteristic of mother-of-pearl and Birch plywood. Journal of the Korea Furniture Society 22(4): 245-251. 

  24. White, R.H. 2000. Charring rate of composite timber products. The proceedings of Wood and Fire Safety 2000, Part 1, 4th International Scientific Conference, May, pp. 14-19. 

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로