$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

프로필렌의 화재 및 폭발 위험성 평가를 위한 온도 200 ℃에서 산소농도와 압력의 변화에 따른 실험적 연구
Experimental Study on the Changes in the Oxygen Concentration and the Pressure at Temperature of 200 ℃ for the Assessment of the Risks of Fire and Explosion of Propylene 원문보기

Korean chemical engineering research = 화학공학, v.58 no.3, 2020년, pp.356 - 361  

최유정 (부경대학교 소방공학과) ,  최재욱 (부경대학교 소방공학과)

초록
AI-Helper 아이콘AI-Helper

프로필렌은 석유화학제품의 제조 시 기초 유분으로 산업 공정에서 널리 사용되고 있으며, 새로운 물질을 제조하기 위하여 200 ℃ 이상의 온도에서 합성되고 있다. 그러나 프로필렌은 인화성 가스로써 화재 및 폭발의 위험성이 존재하므로, 이를 방지하기 위하여 불활성 가스 중 가격이 저렴하고 공기 중 가장 많이 존재하는 질소를 주입하여 사용한다. 본 연구에서는 프로필렌-질소-산소를 사용하여 온도 200 ℃에서 압력의 변화(0.10 MPa, 0.15 MPa, 0.20 MPa, 0.25 MPa)에 따른 실험적 연구를 수행하였다. 산소농도가 21%일 때 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 폭발 하한계는 2.2%에서 1.9%로감소하였으며, 폭발상한계는 14.8%에서 17.6%로증가하였다. 또한최소산소농도는 10.3%에서 10.0%로 감소하여 압력이 증가할수록 폭발 범위가 넓어져 위험성이 증가하였다. 폭발압력은 압력이 0.10 MPa에서 0.25 MPa로 상승할수록 1.84 MPa에서 6.04 MPa로 증가하였으며, 최대 폭발압력상승속도는 90 MPa/s에서 298 MPa/s로 크게 증가하였다. 고온 및 고압에서는 폭발의 위험성이 증가하므로 프로필렌을 사용하는 사업장의 폭발사고 예방을 위한 기초자료를 제공하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Propylene is widely used in petrochemical manufacturing at over 200 ℃. However, since propylene is a flammable gas with fire and explosion risks, inert nitrogen is injected to prevent them. In this study, experiments were conducted using propylene-nitrogen-oxygen upon pressure changes at 200 ...

주제어

표/그림 (6)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서, 본연구에서는질소를사용하여 200 °C에서압력의변화에 따른 폭발한계, 최소산소농도, 폭발압력, 폭발압력상승속도를 구하였으며, 이를 통해 가스의 폭연지수(Kg)를 계산하여 제시함으로써 프로필렌 공정상의 폭발사고를 예방하기 위한 기초 자료를 제공하고자 한다.
  • 25 MPa로 상승할수록 3배 증가하였다. 이를 바탕으로 방출구의 크기, 두께 등 안전장치를 설계하는데 사용할 수 있는 자료를 제공하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
프로필렌의 역할은 무엇인가? 프로필렌은 석유화학제품의 제조 시 기초 유분으로 산업 공정에서 널리 사용되고 있으며, 새로운 물질을 제조하기 위하여 200 ℃ 이상의 온도에서 합성되고 있다. 그러나 프로필렌은 인화성 가스로써 화재 및 폭발의 위험성이 존재하므로, 이를 방지하기 위하여 불활성 가스 중 가격이 저렴하고 공기 중 가장 많이 존재하는 질소를 주입하여 사용한다.
프로필렌 폭발 실험에서 동일한 압력에 산소농도가 증가할수록 최대 폭발압력까지의 도달시간이 짧아지는 이유는? 또한 동일한 압력에서 산소농도가 증가할수록 최대 폭발압력까지의 도달시간이 짧아진다. 이는 압력 용기의 내벽에서 화염면으로 반사되는 압력파 때문이며, 폭발과 동시에 화염 전파면은 기체 분자의 충돌 횟수가 증가하므로 화학적 반응을 가속화됨으로 인하여 짧아지는 것으로 판단된다.
프로필렌의 위험성 방지를 위해 사용하는 것은? 프로필렌은 석유화학제품의 제조 시 기초 유분으로 산업 공정에서 널리 사용되고 있으며, 새로운 물질을 제조하기 위하여 200 ℃ 이상의 온도에서 합성되고 있다. 그러나 프로필렌은 인화성 가스로써 화재 및 폭발의 위험성이 존재하므로, 이를 방지하기 위하여 불활성 가스 중 가격이 저렴하고 공기 중 가장 많이 존재하는 질소를 주입하여 사용한다. 본 연구에서는 프로필렌-질소-산소를 사용하여 온도 200 ℃에서 압력의 변화(0.
질의응답 정보가 도움이 되었나요?

참고문헌 (23)

  1. Liu, S., Gao. X. and Zhang, S., "Self-adaptive Chaotic Local Search Particle Swarm Optimization for Propylene Explosion Region Parameter Identification", The 31th Chinese Control and Decision Conference(CCDC) IEEE, 1702-1707(2019). 

  2. Crowl, D. A. and Louvar, J. F., "Chemical Process Safety: Fundamentals with Application", Pearson Education International, Boston, 225-260(2011). 

  3. Korzynski, M. D. and Dinca, M., "Oxidative Dehydrogenation of Propane on the Realm of Metal-Organic Framework", ACS Central Science, 10-12(2017). 

  4. Kim, W. K., Kim, H. H., Ryu, J. W. and Choi, J. W., "The Measurement of the Explosion Limit and the Minimum Oxygen Concentration of Gasoline According to Variation in Octane Number", Korean Chem. Eng. Res., 55(5), 618-622(2017). 

  5. NFPA 68, "Guide for Venting Deflagrations", National Fire Protection(1998). 

  6. NFPA 68, "Standard on Explosion Protection by Deflagrations Vending", Quincy, MA(2013). 

  7. Lee, C. J. and Kim, L. H., "Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process", Korean Chem. Eng. Res., 57(6), 790-803(2019). 

  8. Mathieu, D., "Power Low Expressions for Predicting Lower and Upper Flammability Limit Temperature", Industrial & Engineering Chemistry Research, 52(26), 9317-9322(2013). 

  9. Razus, D., Oancea, D. and Ionescu, N. I., "Burning Velocity Determination by Spherical Bomb Technique. Part II. Application to Gaseous Propylene-air Mixtures of Various Compositions, Pressure and Temperatures", Rev. Rou. Chim., 45, 319-330(2000). 

  10. Yu, X., Yan, X., Ji, W., Luo, C., Yao, F. and Yu, J., "Effect of Superambient Conditions on the Upper Explosion Limit of Ethane/oxygen and Ethylene/oxygen Mixtures", J. Loss Prevention in the Process Industries, 59, 100-105(2019). 

  11. Giurcan, V., Mitu, M., Razus, D. and Oancea, D., "Influence of Inert Additives on Smallscale Closed Vessel Explosions of Propaneair Mixture", Fire Safety J., 111, 102939(2020). 

  12. Luo, Z., Liu, L., Cheng, F., Wang, T., Su, B., Zhang, J., Gao, S. and Wang, C., "Effects of a Carbon Monoxide-dominant Gas Mixture on the Explosion and Flame Propagation Behaviors of Methane in Air", J. Loss Prevention in the Process Industries, 58, 8-16(2019). 

  13. Jo, Y. D., "Estimate Minimum Amount of Methane for Explosion in a Confined Space", J. Korean Institute of Gas, 21(4), 1-5(2017). 

  14. Choi, Y. J., Heo, J. M., Kim, J. H. and Choi, J. W., "A Study on the Measurement of Explosion Range by $CO_2$ Addition for the Process Safety Operation of Propylene", J. Korea Academia Instial Cooperation Society, 20(7), 599-606(2019). 

  15. Beak, J. H., Lee, H. J. and Jang, C. B., "A Methodology for Determination of the Safety Distance in Chemical Plants using CFD Modeling", J. Korean Society of Safety, 31(3), 162-167(2016). 

  16. Zhang, B., Xiu, G. and Bai, C., "Explosion Characteristics of Argon/nitrogen Diluted Natural Gas-air Mixtures", Fuel, 124, 125-132(2014). 

  17. Chen, S., Chen, H., Zhu, Q. and Liang, D., "Effect of Initial Temperature and Initial Pressure on vapor Explosion Characteristics of Nitro Thinner", J. Loss Prevention in the Process Industries, 61, 298-304(2019). 

  18. Razus, D., Brinzea, V., Mitu, M. and Oancea, D., "Temperature and Pressure Influence on Explosion Pressures of Closed Vessel Propaneair Deflagrations", J. Hazardous Materials, 174, 548-555(2010). 

  19. Ha, D. M., "Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne", Korean Chem. Eng. Res., 56(4), 474-478(2018). 

  20. Leffler, W. L., Natural Gas Liquids: A Nontechnical Guide, PennWell Books, Tulsa, Oklahoma, USA, 112-115(2014). 

  21. Cengel, Y. A. and Cimbala, J. M., Fluid Mechanics: Fundamentals and Applications 4 edition in SI units, Mc Graw-Hill, New York, 40-42(2019). 

  22. Yan, X. T. and Xu, Y., Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials, Springer, London, 29-30(2010). 

  23. ASTM E918-83, Standard Practice for Determinimg Limits of Flammability of Chemicals at Elecated Temperature and Pressure, PA: ASTM International(2011). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로