$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Prediction of Daily PM10 Concentration for Air Korea Stations Using Artificial Intelligence with LDAPS Weather Data, MODIS AOD, and Chinese Air Quality Data 원문보기

대한원격탐사학회지 = Korean journal of remote sensing, v.36 no.4, 2020년, pp.573 - 586  

Jeong, Yemin (Department of Spatial Information Engineering, Pukyong National University) ,  Youn, Youjeong (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University) ,  Cho, Subin (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University) ,  Kim, Seoyeon (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University) ,  Huh, Morang (Nano Weather Incorporation) ,  Lee, Yangwon (Major of Spatial Information Engineering, Division of Earth Environmental System Science, Pukyong National University)

Abstract AI-Helper 아이콘AI-Helper

PM (particulate matter) is of interest to everyone because it can have adverse effects on human health by the infiltration from respiratory to internal organs. To date, many studies have made efforts for the prediction of PM10 and PM2.5 concentrations. Unlike previous studies, we conducted the predi...

주제어

표/그림 (16)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • We gathered the 3 million records for the hourly PM10 concentration from the 331 Air Korea stations. Also, the daily PM10 concentration data for three Chinese cities, the MODIS (Moderate Resolution Imaging Spectroradiometer) AOD (aerosol optical depth) images, and the LDAPS (Local Data Assimilation and Prediction System) meteorological variables were obtained to construct a matchup database. We built an RF model for the prediction of the PM10 concentration of tomorrow for the 331 Air Korea stations.
  • The RF model included 11 input variables: today’s PM10 concentration for each station, today’s PM10 concentration of Beijing, Tianjin, and Weihai, today’s MODIS AOD, and air temperature, relative humidity, wind speed, and boundary layer height for today and tomorrow.
  • We carried out 10-fold cross-validation for the blind test to evaluate the accuracy of our RF model (Fig. 4). First, the 230,639 matchups were divided into ten groups by random sampling.

데이터처리

  • The 10-fold cross-validation enables a more stable model by using the training data with a less-biased sampling. The indices such as MBE (mean bias error), MAE (mean absolute error), RMSE (root mean square error), NRMSE (normalized mean square error), and CC (correlation coefficient) were used for the validation statistics.
본문요약 정보가 도움이 되었나요?

참고문헌 (31)

  1. Ali, J., R. Khan, N. Ahmad, and I. Maqsood, 2012. Random forests and decision trees, International Journal of Computer Science, 9(5): 272-278. 

  2. Asadollahfardi, G., H. Zangooei, and S.H. Aria, 2016. Predicting PM2.5 concentrations using artificial neural networks and Markov chain, a case study Karaj city, Asian Journal of Atmospheric Environment, 10(2): 67-79. 

  3. Athira, V., P. Geetha, R. Vinayakumar, K.P. Soman, 2018. DeepAirNet: applying recurrent networks for air quality prediction, Procedia Computer Science, 132: 1394-1403. 

  4. Cha, J.W. and J.Y. Kim, 2018. Analysis of fine dust correlation between air quality and meteorological factors using SPSS, Journal of the Korea Institute of Information and Communication Engineering, 22(5): 722-727 (in Korean with English abstract). 

  5. Cho, C.B., Y.S. Chun, B.Y. Ku, S.U. Park, S.S. Lee, and Y.A. Chung, 2007. Comparison of ADAM's (Asian Dust Aerosol Model) results with observed PM10 data, Journal of the Korean Meteorological Society, 17(1): 87-99 (in Korean with English abstract). 

  6. Cho, K.W., Y.J. Jung, C.G. Kang, and C.H. Oh, 2019. Conformity assessment of machine learning algorithm for particulate matter prediction, Journal of the Korea Institute of Information and Communication Engineering, 23(1): 20-26 (in Korean with English abstract). 

  7. Cho, K.H., B.Y. Lee, M.H. Kwon, and S.C. Kim, 2019. Air quality prediction using a deep neural network model, Journal of Korea Society for Atmospheric Environment, 35(2): 214-225 (in Korean with English abstract). 

  8. Cho, K.H., Y.J. Jung, J.S. Lee, and C.H. Oh, 2020. Separation prediction model by concentration based on deep neural network for improving PM10 forecast accuracy, Journal of the Korea Institute of Information and Communication Engineering, 24(1): 8-14 (in Korean with English abstract). 

  9. Choubin, B., M. Abdolshahnejad, E. Moradi, X. Querol, A. Mosavi, S. Shamshirband, and P. Ghamisi, 2020. Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain, Science of the Total Environment, 701: 134474. 

  10. Du, C., S. Liu, X. Yu, X. Li, C. Chen, Y. Peng, Y. Dong, Z. Dong, and F. Wang, 2013. Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi'an, central China, Aerosol and Air Quality Research, 13(5): 1598-1607. 

  11. Geis, A., M. Wiegner, B. Bonn, K. Schaer, R. Forkel, E. von Schneidemesser, C. Munkel, K.L. Chan, and R. Nothard, 2017. Mixing layer height as an indicator for urban air quality?, Atmospheric Measurement Techniques, 10(8): 2969-2988. 

  12. Grivas, G. and A. Chaloulakou, 2006. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece, Atmospheric Environment, 40(7): 1216-1229. 

  13. Gupta, P. and S.A. Christopher, 2009. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach, Journal of Geophysical Research: Atmospheres, 114: D20205. 

  14. Jo, Y.J., H.J. Lee, L.S. Chang, and C.H. Kim, 2017. Sensitivity study of the initial meteorological fields on the PM10 concentration predictions using CMAQ modeling, Journal of Korean Society for Atmospheric Environment, 33(6): 554-569 (in Korean with English abstract). 

  15. Kim, J.H., D.R. Choi, Y.S. Koo, J.B. Lee, and H.J. Park, 2016. Analysis of domestic and foreign contributions using DDM in CMAQ during particulate matter episode period of February 2014 in Seoul, Journal of Korean Society for Atmospheric Environment, 32(1): 82-99 (in Korean with English abstract). 

  16. Kim, N., S. Na, C. Park, M. Huh, J. Oh, K. Ha, J. Cho, and Y. Lee, 2020. An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data, Applied Sciences, 10(11): 3785. 

  17. Kim, S.B., K. Yumimoto, I. Uno, and Y. Chun, 2011. Dust model intercomparison between ADAM and CFORS/Dust for Asian dust case in 2007 (March 28 - April 3), Scientific Online Letters on the Atmosphere, 7A: 25-28. 

  18. Kim, Y.P., 2006. Air pollution in Seoul caused by aerosols, Journal of Korean Society for Atmospheric Environment, 22(5): 535-553 (in Korean with English abstract). 

  19. Kwon, J.H., Y.J. Lim, and H.S. Oh, 2015. Particulate matter prediction using quantile boosting, Korean Journal of Applied Statistics, 28(1): 83-92 (in Korean with English abstract). 

  20. Lee, D.W. and S.W. Lee, 2020. Hourly prediction of particulate matter (PM2.5) concentration using time series data and random forest, Korea Information Processing Society Transactions on Software and Data Engineering, 9(4): 129-136 (in Korean with English abstract). 

  21. Lee, K.H., D.H. Lee, and Y.J. Kim, 2006. Application of MODIS satellite observation data for air quality forecast, Journal of Korea Society for Atmospheric Environment, 22(6): 851-862 (in Korean with English abstract). 

  22. Li, Z., J. Guo, A. Ding, H. Liao, J. Liu, Y. Sun, T. Wang, H. Xue, H. Zhang, and B. Zhu, 2017. Aerosol and boundary-layer interactions and impact on air quality, National Science Review, 4(6): 810-833. 

  23. Miao, Y. and S. Liu, 2019. Linkages between aerosol pollution and planetary boundary layer structure in China, Science of Total Environment, 650: 288-296. 

  24. Miri, M., Y. Ghassounb, A. Dovlatabadi, A. Ebrahimnejad, and M.O. Lowner, 2019. Estimate annual and seasonal PM1, PM2.5 and PM10 concentrations using land use regression model, Ecotoxicology and Environmental Safety, 174: 137-145. 

  25. Moon, Y.S., Y.S. Koo, and O.J. Jung, 2014. Analysis of sensitivity to prediction of particulate matters and related meteorological fields using the WRF-Chem model during Asian dust episode days, Korean Earth Science Society, 35(1): 1-18 (in Korean with English abstract). 

  26. Pielke, R.A. and B.P. Hayden, 2020. Planetary boundary layer, available at https://www.britannica.com/science/planetary-boundary-layer, Accessed on Aug. 19, 2020. 

  27. Saide, P.E., G.R. Carmichael, S.N. Spak, L. Gallardo, A.E. Osses, M.A. Mena-Carrasco, and M. Pagowski, 2011. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model, Atmospheric Environment, 45(16): 2769-2780. 

  28. Seinfeld, J. H. and S. N. Pandis, 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, Hoboken, NJ, USA. 

  29. Sohn, K.T., M. Ha, and S.H. Lee, 2016. Prediction model of PM10 concentration over Seoul using CMAQ forecasts, Journal of the Korean Data Analysis Society, 18(6): 3001-3009 (in Korean with English abstract). 

  30. WHO, 2018. WHO Global Ambient Air Quality Database, available at https://www.who.int/airpollution/data/en/, Accessed on Aug. 19, 2020. 

  31. Wu, X., Y. Wang, S. He, and Z. Wu, 2020. PM2.5/ PM10 ratio prediction based on a long shortterm memory neural network in Wuhan, China, Geoscientific Model Development, 13(3): 1499-1511. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로