$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

농업기상 빅데이터를 활용한 스마트 식물병 관리
Smart Plant Disease Management Using Agrometeorological Big Data 원문보기

Research in plant disease = 식물병연구, v.26 no.3, 2020년, pp.121 - 133  

김광형 (APEC 기후센터) ,  이준혁 ((주)노트스퀘어)

초록
AI-Helper 아이콘AI-Helper

기후변화와 이상기후, 급변하는 사회경제적 환경 하에 식량안보를 확보하고 지속가능한 성장을 위해서는 기존의 관행농업을 벗어나 빅데이터와 인공지능을 활용한 스마트농업으로의 전환이 시급하다. 스마트농업을 통해 식물병을 효율적으로 관리하기 위해서는 다양한 첨단기술과 융합할 수 있는 농업 빅데이터가 우선 확보되어야 한다. 본 리뷰에서는 스마트식물병관리를 위해 식물병리학 분야에서 기여할 수 있는 기상환경 및 농업 빅데이터에 대해 알아보고 이를 활용한 식물병의 예측, 모니터링 및 진단, 방제, 예방 및 위험관리의 각 단계별로 현재 우리가 어느 위치에 있는지를 살펴보았다. 이를 바탕으로 현재까지 스마트식물병관리를 위해 준비해온 것과 미흡했던 부분, 앞으로 나아가야 할 방향을 제시하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Climate change, increased extreme weather and climate events, and rapidly changing socio-economic environment threaten agriculture and thus food security of our society. Therefore, it is urgent to shift from conventional farming to smart agriculture using big data and artificial intelligence to secu...

주제어

표/그림 (3)

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 예를 들어, 식물병에 대한 전문성을 가진 식물병리학자를 중심으로 고품질의 필수적인 빅데이터가 수집/분석/활용이 되어야 영농 현장에 바로 적용가능한 스마트농업을 통한 식물병 관리가 가능하다. 따라서 본 리뷰에서는 스마트농업을 통한 식물병 관리, 즉 스마트식물병관리에 필수적인 농업기상(agricultural meteorology 또는 agrometeorology) 빅데이터에 대해 자세히 알아보고자 한다. 다음으로 농업기상 빅데이터를 활용한 스마트식물병관리의 순차적 단계들, 즉 식물병의 예측, 모니터링 및 진단, 방제(control), 예방 및 위험관리에 대한 리뷰를 바탕으로 현재까지 스마트식물병관리를 위해 준비해온 것과 미흡했던 부분, 앞으로 나아가야 할 방향을 제시하고자 한다.
  • 0이 최근에 소개된 개념이고 빅데이터 수집과 분석이 가능해진 시기가 얼마되지 않았음을 고려할 때 당연한 결과로 볼 수 있다. 따라서 본 리뷰에서는 스마트식물병관리의 각 단계별로 현재까지 개발된 기술과 연구 결과 등을 바탕으로 식물병리학에서 기여해야 하는 필수 빅데이터와 분석기법을 이해하고, 더 나아가 다학제적 융합연구의 필요성을 공유하고자 한다(Fig. 2).
  • 0으로 가야하는 시기에 여전히 식물병 관리는 빅데이터와 상관없이 이전의 관행적인 방식에 의존하고 있을지도 모른다. 본 리뷰를 통해 식물병리학이 기여해야만 하는 농업기상 빅데이터와 다양한 빅데이터 분석 및 응용 방법을 이해하고 스마트식물병관리에 필요한 새로운 첨단기술을 제시하였다. 이를 통해 스마트농업을 위한 다학제적 융합연구가 본격적으로 시작되기를 바란다.
  • 식물병에 대한 전문적인 지식이나 필드 경험이 부족한 경우, 샘플링이 충분치 않은 경우, 조사자가 병 조사에 집중하지 않는 경우 존재하는 병징이나 표징을 놓치는 상황이 발생한다(Bell 등, 2014). 스마트농업에서는 원격 이미지센서를 통해 수집되는 이미지 빅데이터를 기반으로 이 문제를 해결하고자 하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (86)

  1. Ahn, J. and Lee, H. 2015. Smart farm using IoT that change the lives of rural people. Plan. Policy 5: 19-26. 

  2. Anantrasirichai, N., Hannuna, S. and Canagarajah, N. 2017. Automatic leaf extraction from outdoor images. arXiv 1709.06437. 

  3. Barbedo, J. G. A. 2018. Factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 172: 84-91. 

  4. Bell, H., Wakefield, M., Macarthur, R., Stein, J., Collins, D., Hart, A. et al. 2014. Plant health surveys for the EU territory: an analysis of data quality and methodologies and the resulting uncertainties for pest risk assessment (PERSEUS) CFP/EFSA/PLH/2010/01.EFSA Support. Publ. 11: 676E. 

  5. Bendre, M. R., Thool, R. C. and Thool, V. R. 2015. Big data in precision agriculture: weather forecasting for future farming. In: 2015 1st International Conference on Next Generation Computing Technologies (NGCT), pp. 744-750. Institute of Electrical and Electronics Engineers, New York, NY, USA. 

  6. Bera, T., Das, A., Sil, J. and Das, A. K. 2019. A survey on rice plant disease identification using image processing and data mining techniques. In: Emerging Technologies in Data Mining and Information Security, Advances in Intelligent Systems and Computing, Vol. 814, eds. by A. Abraham, P. Dutta, J. Mandal, A. Bhattacharya and S. Dutta, pp. 365-376. Springer, Singapore. 

  7. Bronson, K. and Knezevic, I. 2016. Big data in food and agriculture. Big Data Soc. 3: 1-5. 

  8. Carranza-Rojas, J., Goeau, H., Bonnet, P., Mata-Montero, E. and Joly, A. 2017. Going deeper in the automated identification of Herbarium specimens. BMC Evol. Biol. 17: 181. 

  9. Chen, M., Brun, F., Raynal, M. and Makowski, D. 2020. Forecasting severe grape downy mildew attacks using machine learning. PLoS ONE 15: e0230254. 

  10. Chene, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P. et al. 2012. On the use of depth camera for 3D phenotyping of entire plants. Comput. Electron. Agric. 82: 122-127. 

  11. Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M. and Schmidhuber, J. 2011. Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, ed. by W. Toby, pp. 1237-1242. AAAI Press, Palo Alto, CA, USA. 

  12. Coble, K. H., Mishra, A. K., Ferrell, S. and Griffin, T. 2018. Big data in agriculture: a challenge for the future. Appl. Econ. Perspect. Policy 40: 79-96. 

  13. de Oliveira Aparecido, L. E., de Souza Rolim, G., De Moraes, J. R. D. S. C., Costa, C. T. S. and de Souza, P. S. 2020. Machine learning algorithms for forecasting the incidence of Coffea arabica pests and diseases. Int. J. Biometeorol. 64: 671-688. 

  14. Devlin, B. 2012. The Big Data Zoo-Taming the Beasts: The Need for an Integrated Platform for Enterprise Information. 9sight Consulting, Cape Town, South Africa. 12 pp. 

  15. Dietterich, T. G. 2000. Ensemble methods in machine learning. In: Multiple Classifier Systems, Vol. 1857 of Lecture Notes in Computer Science, eds. by J. Kittler and F. Roli, pp. 1-15. Springer, Berlin/Heidelberg, Germany. 

  16. Ehler, L. E. 2006. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 62: 787-789. 

  17. Eum, H.-I., Kim, J. P. and Cho, J. 2018. High-resolution climate data from an improved GIS-based regression technique for South Korea. KSCE J. Civil Eng. 22: 5215-5228. 

  18. Fahrentrapp, J., Ria, F., Geilhausen, M. and Panassiti, B. 2019. Detection of gray mold leaf infections prior to visual symptom appearance using a five-band multispectral sensor. Front. Plant Sci. 10: 628. 

  19. Fenu, G. and Malloci, F. M. 2019. An application of machine learning technique in forecasting crop disease. In: Proceedings of the 2019 3rd International Conference on Big Data Research, pp. 76-82. Association for Computing Machinery, New York, NY, USA. 

  20. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L. et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484: 186-194. 

  21. Giraud, T., Gladieux, P. and Gavrilets, S. 2010. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol. Evol. 25: 387-395. 

  22. Grunwald, N. J. and Goss, E. M. 2011. Evolution and population genetics of exotic and re-emerging pathogens: novel tools and approaches. Annu. Rev. Phytopathol. 49: 249-267. 

  23. Hammer, C., Kostroch, D. C., Quiros, G. and STA Internal Group. 2017. Big Data: Potential, Challenges and Statistical Implications. International Monetary Fund, Washington DC, USA. 41 pp. 

  24. Hillnhutter, C., Mahlein, A.-K., Sikora, R. A. and Oerke, E.-C. 2011. Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crops Res. 122: 70-77. 

  25. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N. et al. 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 29: 82-97. 

  26. Ip, R. H. L., Ang, L.-M., Seng, K. P., Broster, J. C. and Pratley, J. E. 2018. Big data and machine learning for crop protection. Comput. Electron. Agric. 151: 376-383. 

  27. Ishii, K. 2014. Big data analysis in medicine, agriculture and environmental sciences. Seibutsu-kogaku Kaishi 92: 92-93. 

  28. Jeon, S. 2011. Mechanisms of labor transition during agricultural transformation: the cases of South Korea and Indonesia. In: 2011 International Conference on Asia Agriculture and Animal IPCBEE, Vol. 13, pp. 21-26. IACSIT Press, Singapore. 

  29. Kaundal, R., Kapoor, A. S. and Raghava, G. P. S. 2006. Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinformatics 7: 485. 

  30. Kim, C.-G., Lee, S.-M., Jeong, H.-K., Jang, J.-K., Kim, Y.-H. and Lee, C.-K. 2010. Impacts of Climate Change on Korean Agriculture and Its Counterstrategies. Korea Rural Economic Institute, Naju, Korea. 306 pp. 

  31. Kim, M.-K., Han, M.-S., Jang, D.-H., Baek, S.-G., Lee, W.-S. and Kim, Y.-J. 2012. A production method for historical climate data with 1-km-resolution grids. Clim. Res. 7: 55-68. 

  32. Kim, S., Lee, M. and Shin, C. 2018a. IoT-based strawberry disease prediction system for smart farming. Sensors 18: 4051. 

  33. Kim, Y., Roh, J.-H. and Kim, H. Y. 2018b. Early forecasting of rice blast disease using long short-term memory recurrent neural networks. Sustainability 10: 34. 

  34. Kumar, A. 2015. Science of omics for agricultural productivity: future perspective: a national conference report. Int. J. Comput. Bioinform. In Silico Model. 4: 607-610. 

  35. LeCun, Y., Bengio, Y. and Hinton, G. 2015. Deep learning. Nature 521: 436-444. 

  36. LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86: 2278-2324. 

  37. Li, X.-F., Chen, S.-H. and Guo, L.-F. 2014. Technological innovation of agricultural information service in the age of big data. J. Agric. Sci. Technol. 16: 10-15. 

  38. Luo, W., Pietravalle, S., Parnell, S., Van den Bosch, F., Gottwald, T. R., Irey, M. S. et al. 2012. An improved regulatory sampling method for mapping and representing plant disease from a limited number of samples. Epidemics 4: 68-77. 

  39. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G. and Johnson, B. A. 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 152: 166-177. 

  40. Magarey, R. D., Sutton, T. B. and Thayer, C. L. 2005. A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95: 92-100. 

  41. Mahlein, A.-K. 2016. Plant disease detection by imaging sensors: parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 100: 241-251. 

  42. McRoberts, N., Hall, C., Madden, L. V. and Hughes, G. 2011. Perceptions of disease risk: From social construction of subjective judgments to rational decision making. Phytopathology 101: 654-665. 

  43. Milgroom, M. G. and Fry, W. E. 1997. Contributions of population genetics to plant disease epidemiology and management. Adv. Bot. Res. 24: 1-30. 

  44. Mohanty, S. P., Hughes, D. P. and Salathe, M. 2016. Using deep learning for image-based plant disease detection. Front. Plant Sci. 7: 1419. 

  45. Mokhtar, U., Ali, M. A. S., Hassanien, A. E. and Hefny, H. 2015. Identifying two of tomatoes leaf viruses using support vector machine. In: Information Systems Design and Intelligent Applications, eds. by J. K. Mandal, S. C. Satapathy, M. K. Sanyal, P. P. Sarkar and A. Mukhopadhyay, pp. 771-782. Springer, New Delhi, India. 

  46. Montone, V. O., Fraisse, C. W., Peres, N. A., Sentelhas, P. C., Gleason, M., Ellis, M. et al. 2016. Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states. Int. J. Biometeorol. 60: 1761-1774. 

  47. Moschini, G. and Hennessy, D. A. 2001. Uncertainty, risk aversion, and risk management for agricultural producers. In: Handbook of Agricultural Economics, Vol. 1, eds. by B. L. Gardner and G. C. Rausser, pp. 87-153. Elsevier, Amsterdam, Netherlands. 

  48. Nelson, M. R., Orum, T. V., Jaime-Garcia, R. and Nadeem, A. 1999. Applications of geographic information systems and geostatistics in plant disease epidemiology and management. Plant Dis. 83: 308-319. 

  49. Nettleton, D. F., Katsantonis, D., Kalaitzidis, A., Sarafijanovic-Djukic, N., Puigdollers, P. and Confalonieri, R. 2019. Predicting rice blast disease: machine learning versus process-based models. BMC Bioinformatics 20: 514. 

  50. Noyes, K. 2014. Big data poised to change the face of agriculture. Fortune data. URL http://fortune.com/2014/05/30/croppingup-on-every-farm-big-data-technology/ [30 May 2014]. 

  51. Ojiambo, P. S., Yuen, J., Van den Bosch, F. and Madden, L. V. 2017. Epidemiology: past, present, and future impacts on understanding disease dynamics and improving plant disease management: a summary of focus issue articles. Phytopathology 107: 1092-1094. 

  52. Paoletti, M. E., Haut, J. M., Plaza, J. and Plaza, A. 2019. Deep learning classifiers for hyperspectral imaging: a review. ISPRS J. Photogramm. Remote Sens. 158: 279-317. 

  53. Pascual, L., Romo, J. and Ruiz, E. 2006. Bootstrap prediction for returns and volatilities in GARCH models. Comput. Stat. Data Anal. 50: 2293-2312. 

  54. Pavan, W., Fraisse, C. W. and Peres, N. A. 2009. A web-based decision support tool for timing fungicide applications in strawberry. EDIS 9: 1-5. 

  55. Polak, L. and Milos, J. 2020. Performance analysis of LoRa in the 2.4 GHz ISM band: coexistence issues with Wi-Fi. Telecommun. Syst. 74: 299-309. 

  56. Raza, S.-e.-A., Prince, G., Clarkson, J. P. and Rajpoot, N. M. 2015. Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS ONE 10: e0123262. 

  57. Rose, D. C. and Chilvers, J. 2018. Agriculture 4.0: broadening responsible innovation in an era of smart farming. Front. Sustain. Food Syst. 2: 87. 

  58. Rowlandson, T., Gleason, M., Sentelhas, P., Gillespie, T., Thomas, C. and Hornbuckle, B. 2015. Reconsidering leaf wetness duration determination for plant disease management. Plant Dis. 99: 310-319. 

  59. Ruane, A. C., Goldberg, R. and Chryssanthacopoulos, J. 2015. Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agric. For. Meteorol. 200: 233-248. 

  60. Ryan, S. F., Adamson, N. L., Aktipis, A., Andersen, L. K., Austin, R., Barnes, L. et al. 2018. The role of citizen science in addressing grand challenges in food and agriculture research. Proc. Biol. Sci. 285: 20181977. 

  61. Sabarina, K. and Priya, N. 2015. Lowering data dimensionality in big data for the benefit of precision agriculture. Procedia Comput. Sci. 48: 548-554. 

  62. Sannakki, S. S., Rajpurohit, V. S., Nargund, V. B., Kumar, R. A. and Yallur, P. S. 2011. Leaf disease grading by machine vision and fuzzy logic. Int. J. Comput. Technol. Appl. 2: 1709-1716. 

  63. Scherm, H., Ngugi, H. K. and Ojiambo, P. S. 2006. Trends in theoretical plant epidemiology. Eur. J. Plant Pathol. 115: 61-73. 

  64. Schmidhuber, J. and Tubiello, F. N. 2007. Global food security under climate change. Proc. Natl. Acad. Sci. U. S. A. 104: 19703-19708. 

  65. Schonfeld, M. V., Heil, R. and Bittner, L. 2018. Big data on a farm: smart farming. In: Big Data in Context, eds. by T. Hoeren and B. Kolany-Raiser, pp. 109-120. Springer, Cham, Switzerland. 

  66. Seo, Y. J. 2016. Korea's smart agriculture status and major challenges. World Agric. 185: 51-71. (In Korean) 

  67. Shtienberg, D. 2013. Will decision-support systems be widely used for the management of plant diseases? Annu. Rev. Phytopathol. 51: 1-16. 

  68. Sonka, S. 2015. Big Data: from hype to agricultural tool. Farm Policy J. 12: 1-9. 

  69. Sperschneider, J. 2019. Machine learning in plant-pathogen interactions: empowering biological predictions from field scale to genome scale. New Phytol. 228: 35-41. 

  70. Stubbs, M. 2016. Big Data in U.S. Agriculture. Report R44331. Congressional Research Service, Washington, DC, USA. 14 pp. 

  71. Surendrababu, V., Sumathi, C. P. and Umapathy, E. 2014. Detection of rice leaf diseases using chaos and fractal dimension in image processing. Int. J. Comput. Sci. Eng. 6: 69-74. 

  72. Tantalaki, N., Souravlas, S. and Roumeliotis, M. 2019. Data-driven decision making in precision agriculture: the rise of Big Data in agricultural systems. J. Agric. Food Inf. 20: 344-380. 

  73. Too, E. C., Yujian, L., Njuki, S. and Yingchun, L. 2019. A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 161: 272-279. 

  74. Tripathy, A. K., Adinarayana, J., Vijayalakshmi, K., Merchant, S. N., Desai, U. B., Ninomiya, S. et al. 2014. Knowledge discovery and leaf spot dynamics of groundnut crop through wireless sensor network and data mining techniques. Comput. Electron. Agric. 107: 104-114. 

  75. United Nations Economic Commission for Europe. 2013. Classification of types of big data. URL http://www1.unece.org/stat/platform/display/bigdata/Classification+of+Types+of+Big+Data [2 August 2016]. 

  76. Vashi, S., Ram, J., Modi, J., Verma, S. and Prakash, C. 2017. Internet of Things (IoT): a vision, architectural elements, and security issues. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 492-496. Institute of Electrical and Electronics Engineers, New York, USA. 

  77. Verhoosel, J., van Bekkum, M. and Verwaart, T. 2016. HortiCube: a platform for transparent, trusted data sharing in the food supply chain. In: Proceedings in System Dynamics and Innovation in Food Networks 2016, eds. by G. Schiefer and U. Rickert, pp. 384-388. Universitat Bonn-ILB Press, Bonn, Germany. 

  78. Vogt, W. 2013. Looking at big data one plant at a time. Farm Industry News. URL http://farmindustrynews.com/blog/looking-bigdata-one-plant-time [7 May 2015]. 

  79. Wahabzada, M., Mahlein, A.-K., Bauckhage, C., Steiner, U., Oerke, E.- C. and Kersting, K. 2015. Metro maps of plant disease dynamics: automated mining of differences using hyperspectral images. PLoS ONE 10: e0116902. 

  80. Weersink, A., Fraser, E., Pannell, D., Duncan, E. and Rotz, S. 2018. Opportunities and challenges for big data in agricultural and environmental analysis. Annu. Rev. Resour. Econ. 10: 19-37. 

  81. Wetterich, C. B., Kumar, R., Sankaran, S., Junior, J. B., Ehsani, R. and Marcassa, L. G. 2013. A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of citrus huanglongbing disease in USA and Brazil. In: Frontiers in Optics 2013/Laser Science, pp. JW3A-26. Optical Society of America, Washington, DC, USA. 

  82. Wolfert, S., Ge, L., Verdouw, C. and Bogaardt, M.-J. 2017. Big data in smart farming: a review. Agric. Syst. 153: 69-80. 

  83. World Meteorological Organization. 2010. Guide to Agricultural Meteorological Practices. World Meteorological Organization No. 134. World Meteorological Organization, Geneva, Switzerland. 799 pp. 

  84. Yan, J., Risacher, S. L., Shen, L. and Saykin, A. J. 2018. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief. Bioinform. 19: 1370-1381. 

  85. Yang, X. and Guo, T. 2017. Machine learning in plant disease research. Eur. J. BioMed. Res. 3: 6-9. 

  86. Yeo, H. 2019. Overseas agricultural big data utilization status. World Agric. 266: 37-52. (In Korean) 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로