$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

산화스트레스와 치매
Oxidative Stress and Alzheimer's Disease 원문보기

Journal of dairy science and biotechnology, v.38 no.3, 2020년, pp.134 - 141  

유자연 (농촌진흥청 국립축산과학원) ,  윤정희 (농촌진흥청 국립축산과학원) ,  설국환 (농촌진흥청 국립축산과학원) ,  오미화 (농촌진흥청 국립축산과학원) ,  함준상 (농촌진흥청 국립축산과학원)

Abstract AI-Helper 아이콘AI-Helper

Oxidative stress is a cascade reaction characterized by a significant increase in the amount of oxidized components. Free radicals produced by oxidative stress are one of the common features in several experimental models of disease, and contribute to wide range of neurodegenerative diseases, includ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 게다가, 최근에 인정된 철-의존성 프로그램화 세포 사멸인 ferroptosis는 지질 기반 ROS의 누적으로 발생될 뿐만 아니라, AD와 PD 같은 질환에서 신경 세포 사멸의 주요인으로 제안된다[12–16]. 따라서, 본 고에서는 ROS 발생에서 철의 역할과 자유라디칼에 의해 일어나는 산화적 손상을 기술하고, AD와 산화스트레스의 관계 및 잠재적 치료 전략에 대한 논문을 소개하고자 한다.

가설 설정

  • 비록 ferroptosis에서 철의 정확한 역할은 불명확하지만, 하나의 가능한 기작은 철이 Fenton 및 Fenton 유사반응으로 지질 과산화물과 반응하여 산화적 라디칼을 생산(반응 4-6 참조)하는 것이다[39]. 이 가설은 ferroptosis가 비타민 E 같은 지용성 항산화제와 deferoxamine을 포함하는 철 결합제에 의해 제한될 수 있다는 증거에 의해 지지된다[38]. Ferroptosis는 특히 철(II) 종의 산화환원 활성 철 증가에 기인한 항상성의 파괴와 관련이 있다[12].
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. Cho CH, Kim EA, Kim J, Choi SY, Yang SJ, Cho SW. N-Adamantyl-4-methylthiazol-2-amine suppresses amyloid beta-induced neuronal oxidative damage in cortical neurons. Free Radic Res. 2016;1-35. 

  2. Di Pietro V, Lazzarino G, Amorini AM, Tavazzi B, D'Urso S, Longo S, et al. Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic Biol Med. 2014;69:258-264. 

  3. Feuerstein D, Backes H, Gramer M, Takagaki M, Gabel P, Kumagai T, et al. Regulation of cerebral metabolism during cortical spreading depression. J Cereb Blood Flow Metab. 2016;36:1965-1977. 

  4. Brieger K, Schiavone S, Miller Jr FJ, Krause KH. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659. 

  5. Padurariu M, Ciobica A, Hritch L, Stoica B, Bild W, Stefanescu C. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimers disease. Neurosci Lett. 2010;469:6-10. 

  6. Lee DH, Gold R, Linker RA. Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci. 2012;13:11783-11803. 

  7. Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Adv Pharmacol Sci. 2011;2011:572634. 

  8. Jenner P. Oxidative stress in Parkinsons disease. Ann Neurol. 2003;53:S26-S36. 

  9. Mancuso M, Orsucci D, LoGerfo A, Calsolaro V, Siciliano G. Clinical features and pathogenesis of Alzheimer's disease: involvement of mitochondria and mitochondrial DNA. Adv Exp Med Biol. 2010;685:34-44. 

  10. Perfeito R, Cunha-Oliveira T, Rego AC. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med. 2013;62:186-201. 

  11. Everett J, Collingwood JF, Tjendana-Tjhin V, Brooks J, Lermyte F, Plascencia-Villa G, et al. Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimers disease subjects. Nanoscale. 2018;10:11782-11796. 

  12. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130-143. 

  13. Morris G, Berk M, Carvalho AF, Maes M, Walker AJ, Puri BK. Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res. 2018;341:154-175. 

  14. Stockwell BR, Friedmann AJP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273-285. 

  15. Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S. Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochem Int. 2017;104:34-48. 

  16. Belaidi AA, Bush AI. Iron neurochemistry in Alzheimers disease and Parkinson's disease: targets for therapeutics. J Neurochem. 2016;139:179-197. 

  17. Fenton HJH. Oxidation of tartaric acid in presence of iron. J Chem Soc Trans. 1894;65:899-910. 

  18. Prousek J. Fenton chemistry in biology and medicine. Pure Appl Chem. 2007;79:2325-2338. 

  19. Koskenkorva-Frank TS, Weiss G, Koppenol WH, Burckhardt S. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic Biol Med. 2013;65:1174-1194. 

  20. Bataineh H, Pestovsky O, Bakac A. pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chem Sci. 2012;3:1594-1599. 

  21. Lakhal-Littleton S. Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radic Biol Med. 2019;133:234-237. 

  22. Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. 2019;133:221-233. 

  23. Koppenol WH, Hider RC. Iron and redox cycling. Do's and don'ts. Free Radic Biol Med. 2019;133:3-10. 

  24. Puliyel M, Mainous AG III, Berdoukas V, Coates TD. Iron toxicity and its possible association with treatment of cancer: lessons from hemoglobinopathies and rare, transfusion-dependent anemias. Free Radic Biol Med. 2015;13:342-344. 

  25. Spangler B, Morgan CW, Fontaine SD, Vander Wal MN, Chang CJ, Wells JA, et al. A reactivity-based probe of the intracellular labile ferrous iron pool. Nat Chem Biol. 2016;12:680-685. 

  26. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65-87. 

  27. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13:342-355. 

  28. Tenopoulou M, Kurz T, Doulias PT, Galaris D, Brunk UT. Does the calcein-AM method assay the total cellular 'labile iron pool' or only a fraction of it?. Biochem J. 2007;403:261-266. 

  29. Adams F, Bounds PL, Kissner R, Koppenol WH. Redox properties and activity of iron-citrate complexes: evidence for redox cycling. Chem Res Toxicol. 2015;28:604-614. 

  30. Nischwitz V, Berthele A, Michalke B. Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: an approach to investigate the permeability of the human blood-cerebrospinal fluid barrier. Anal Chim Acta. 2008;627:258-269. 

  31. Forman HJ, Benardo A, Davies KJA. What is the concentration of hydrogen peroxide in blood and plasma?. Arch Biochem Biophys. 2016;603:48-53. 

  32. Bhattacharjee S, Chatterjee S, Jiang J, Sinha BK, Mason RP. Detection and imaging of the free radical DNA in cells-Site-specific radical formation induced by Fenton chemistry and its repair in cellular DNA as seen by electron spin resonance, immune-spin trapping and confocal microscopy. Nucleic Acid Res. 2012;40:5477-5486. 

  33. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44-84. 

  34. Bonda DJ, Wang X, Lee HG, Smith MA, Perry G, Zhu X. Neuronal failure in Alzheimer's disease: a view through the oxidative stress looking-glass. Neurosci Bull. 2014;30:243-252. 

  35. Castellani RJ, Moreira PI, Perry G, Zhu X. The role of iron as a mediator of oxidative stress in Alzheimer disease. BioFactors. 2012;38:133-138. 

  36. Sultana R, Butterfield Da. Oxidative modification of brain proteins in Alzheimer's disease: perspective on future studies based on results of redox proteomics studies. J Alzheimers Dis. 2013;33:S243-S251. 

  37. Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metabolism and recycling. Int J Biochem Cell Biol. 2011;43:1686-1697. 

  38. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10:9-17. 

  39. Shah R, Shchepinov MS, Pratt DA. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 2018;4:387-396. 

  40. Dusek P, Schneider SA, Aaseth J. Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol. 2016;38:81-92. 

  41. Wipf P, Xiao J, Jiang J, Belikova NA, Tyurin VA, Fink MP, et al. Mitochondrial targeting of selective electron scavengers: synthesis and biological analysis of hemigramicidin- TEMPO conjugates. J Am Chem Soc. 2005;127:12460-12461. 

  42. Xun Z, Rivera-Sanchez S, Ayala-Pena S, Lim J, Budworth H, Skoda EM, et al. Targeting of XJB-5-131 to mitochondria suppresses oxidative DNA damage and motor decline in a mouse model of Huntington's disease. Cell Rep. 2012;2:1137-1142. 

  43. Wilcox CS. Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther. 2010;126:119-145. 

  44. Aronovitch Y, Godinger D, Israeli A, Krishna MC, Samuni A, Goldstein S. Dual activity of nitroxides as pro- and antioxidants: catalysis of copper-mediated DNA breakage and $H_2O_2$ dismutation. Free Radic Biol Med. 2007;42:1317-1325. 

  45. Shi F, Zhang P, Mao Y, Wang C, Zheng M, Zhao Z. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide. Biochem Biophys Res Commun. 2017;483:159-164. 

  46. Zhao Z. Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med. 2019;2:82-87. 

  47. Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7:S41-S50. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로