$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유전자교정작물 내 비의도적 돌연변이의 안전성 논란에 관한 과학적 고찰
Scientific considerations for the biosafety of the off-target effects of gene editing in crops 원문보기

Journal of plant biotechnology = 식물생명공학회지, v.47 no.3, 2020년, pp.185 - 193  

이신우 (국립경남과학기술대학교 생명과학대학 농학.한약자원학부) ,  김윤희 (국립경상대학교 사범대학 생물교육과(농업생명과학연구원))

초록
AI-Helper 아이콘AI-Helper

최근, 유전자교정 작물의 상업화 승인 건수가 급속하게 늘어나고 있으며, 국내에서도 유전자교정 작물의 개발에 대한 집중적인 투자를 통하여 국제경쟁력을 높이기 위하여 노력하고 있다. 그러나 기존의 유전자변형작물의 상업화 과정에서 끊임없이 제기되어온 인체 및 환경에 대한 잠재적인 위해성 논란이 유전자교정 작물에 대하여서도 제기되고 있다. 특히, 비의도적 돌연변이(off-target)가 가장 큰 논란의 중심이 되고 있다. 따라서 본 리뷰는 식물이 내포하고 있는 장점인 배수체, 체세포 돌연변이 그리고 자연 상태에서 아그로박테리아의 T-DNA 단편의 수평 전이로 창출된 자연적인 유전자변형작물과 기존에 상업화가 승인된 유전자변형작물 이벤트들의 게놈 내 비의도적 돌연변이 사례 등을 검토한 결과 유전자교정 작물에서 나타나는 대부분의 비의도적 돌연변이는 인체 및 환경에 미칠 수 있는 위해성을 우려할 만한 수준이 아니라고 할 수 있었다. 이에, 유전자교정 작물의 안전성 평가를 위하여 새로운 규정을 제정할 필요가 없으며 기존의 유전자변형작물의 안전 관리규정을 일부 "용어의 정의" 등만 개정하여 적용하면 충분할 것으로 사료 되었다.

Abstract AI-Helper 아이콘AI-Helper

The number of commercially approved gene-edited crops is gradually increasing, and in South Korea, it has led to intense investment in gene-edited crop development to increase international competitiveness. However, as with genetically modified crops, the safety of gene-edited crops regarding unexpe...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 논문에서는 유전자교정 작물의 비의도적 돌연변이의 안전성에 관하여 식물이 내포하고 있는 특성에 따른 장점을 검토하고, 자연 상태에서 자연적으로 발생하여 재배종화 된 GM 작물들과 현재까지 안전성 심사결과 상업화가 승인된 유전자변형작물 이벤트 중 비의도적 돌연변이가 발생된 사례들을 조사하여 인체 및 안전성에 미칠 잠재적인 위해성 여부 등을 검토하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (60)

  1. Agapito-Tenfen AZ, Okoli AS, Bernstein MJ, Odd-Gunnar Wikmark O-G, Myhr AI (2018) Revisiting risk governance of GM plants: the need to consider new and emerging geneediting techniques. Front Plant Sci 9:1874-1890 

  2. Aoki S, Kawaoka A, Sekine M, Ichikawa T, Fujita T, Shinmyo A (1994) Sequence of the cellular T-DNA in the untransformed genome of Nicotiana glauca that is homologous to ORFs 13 and 14 of the Ri plasmid and analysis of its expression in genetic tumors of N. glauca x N. langsdorffii. Mol Gen Genet 243:706-710 

  3. Aoki S, Syono K (1999) Horizontal gene transfer and mutation: ngrol genes in the genome of Nicotiana glauca. Proc Natl Acad Sci USA 96:13229-13234 

  4. Aoki S (2004) Resurrection of an ancestral gene: Functional and evolutionary analyses of the Ngrol genes transferred from Agrobacterium to Nicotiana. J Plant Res 117:329-337 

  5. Carroll D, Van Eenennaam AL, Taylor JF, Seger J, Voytas DF (2016) Regulate genome-edited products, not genome editing itself. Nat Biotechnol 34:477-479 

  6. Chen K, Dorlhac de Borne F, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J 80:669-682 

  7. Chen K, Borne FD, Julio E, Obszynski J, Pale P, Otten L (2016) Rootspecific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum. Plant J 87:258-269 

  8. Chen K, Otten L (2017) Natural Agrobacterium transformants: Recent results and some theoretical considerations. Front Plant Sci 8:1600-1616 

  9. Costantino P, Capone I, Cardarelli M, De Paolis A, Mauro ML, Trovato M (1994) Bacterial plant oncogenes: the rol genes' saga. Genetica 94:203-211 

  10. Endo M, Mikami M, Toki S (2014) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56:41-47 

  11. Feng Z, Mao Y. Xu N, Zhang B, Wei P, Yang DL, Wang Z, Zhang Z, Zheng R, Yang L (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632-4637 

  12. Furner IJ, et al. (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319:422-427 

  13. Hajiahmadi Z, Shirzadian-Khorramabad R, Kazemzad M, Sohani MM (2019) Enhancement of tomato resistance to Tuta absoluta using a new efficient mesoporous silica nanoparticle-mediated plant transient gene expression approach. Sci Hortic 243:367-375 

  14. Hahn F, Nekrasov V (2019) CRISPR/Cas precision: Do we need to worry about off-targeting in plants? Plant Cell Rep 38:437-441 

  15. Hajiahmadi Z, Movahedi A, Wei H, Li D, Orooji Y, Ruan H, Zhuge Q (2019) Strategies to increase on-target and reduce off-target effects of the CRISPR/Cas9 system in plants. Int J Mol Sci 20: 3719-3738 

  16. He Y, Wang R, Dai X, Zhao Y (2017) On improving CRISPR for editing plant genes: Ribozyme-mediated guide RNA production and fluorescence-based technology for isolating transgene-free mutants generated by CRISPR. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, Volume 149, pp. 151-166 

  17. Hilscher J, Burstmayr H, Stoger E (2017) Targeted modification of plant genomes for precision crop breeding. Biotechnol J 12:1-4 

  18. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827-832 

  19. Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100-110 

  20. ISAAA brief 54 (2019) Executive Summary, Global Status of Commercialized Biotech/GM Crops in 2018 

  21. Jacobs TB, LaFayette PR, Schmitz JR, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16 

  22. Jones HD (2015) Future of breeding by genome editing is in the hands of regulators. GM Crops Food 6:223-232 

  23. Kovacova V, Zluvova J, Janousek B, Talianova M, Vyskot B (2014) The evolutionary fate of the horizontally transferred Agrobacterial mikimopine synthase eene in the genera Nicotiana and Linaria. PLoS ONE 9:e113872 

  24. Kyndt T, Quispea D, Zhaic H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweetpotato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844-5849 

  25. Lawrenson T, Shorinola O, Stacey N, Li C, Ostergaard L, Patron NJ, Uauy C, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Gen Biol 30:258-271 

  26. Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence-Dill CJ, Joung JK (2019) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J 17:362-372 

  27. Lee SW (2011) Strategies for the development of GM crops in accordance with the environmental risk assessment (I). J Plant Biotechnol 38:1-5 

  28. Lee SW (2018) Strengthening the competitiveness of agricultural biotechnology through practical application of gene editing technology. J Plant Biotechnol 45:135-170 

  29. Lee SW (2019) Current status on the modification of the scope for GMO regulation on the gene edited plants with no remnants of inserted foreign DNA fragments. J Plant Biotechnol 46:137-142 

  30. Lemcke K, Schmulling T (1998) Gain of function assays identify non- rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 15:423-433 

  31. Li Z, Liu Z, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960-970 

  32. Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H, Li B, Lindsey K, Daniell H, Jin S, Zhang X (2019) Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants Plant Biotechol J 17:858-868 

  33. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261-14266 

  34. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM 92013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833-838 

  35. Matveeva TV, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus Agrobacterium to the plant linaria in nature. Mol Plant Microbe Interact 2512:1542-1551 

  36. Matveeva TV, Kosachev PA (2013) "Sequences homologous to Agrobacterium rhizogenes rolC In the genome of Linaria acutiloba, "in International Conference on Frontiers of Environment, Energy and Bioscience (ICFEEB 2013). (Lancaster, PA:DES tech Publications, Inc.), 541-546 

  37. Matveeva TV, Lutova LA (2014) Horizontal gene transfer from Agrobacterium to plants. Front Plant Sci 5:1-11 

  38. Matveeva TV (2018) Agrobacterium-mediated transformation in the evolution of plants. Curr Top Microbiol Immunol 418: 421-441 

  39. Mohajjel-Shoja H, Clement B, Perot J, Alioua M, Otten L (2011) Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes. Mol Plant-Microbe Interact 24:44-53 

  40. Pavlova OA, Matveeva TV, Lutova LA (2013) Linaria dalmatica genome contains a homologue of rolC gene of Agrobacterium rhizogenes. Eco Genet 11:10-15 

  41. Pavlova O, Matveeva T, Lutova L (2014). Genome of Linaria dalmatica contains Agrobacterium rhizogenes RolC gene homolog. Russ J Genet Appl Res 4:461-465 

  42. Peterson BA, Haak DC, Nishimura MT, Teixeira PJ, James SR, Dangl JL, Nimchuk ZL (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS ONE 16:11, e0162169 

  43. Quispe-Huamanquispe DG, Gheysen G, Kreuze JF (2017) Horizontal gene transfer contributes to plant evolution: The case of Agrobacterium T-DNAs. Front Plant Sci 8:2015-2021 

  44. Quispe-Huamanquis DG, Gheysen G, Yang J, Jarret R, Rossel G, Kreuze JF (2019) The horizontal gene transfer of Agrobacterium T-DNAs into the series Batatas (Genus Ipomoea) genome is not confined to hexaploid sweetpotato. Sci Rep 9:12584-12597 

  45. Rosati A, Bogani P, Santarlasci A, Buiatti M (2008) Characterisation of 3' transgene insertion site and derived mRNAs in MON810 YieldGard maize. Plant Mol Biol 67:271-281 

  46. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086-6095 

  47. Shan QY, Wang K, Chen Z, Liang J, Li Y, Zhang K, Zhang J, Liu DFV, Zheng X (2013) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6:1365-1368 

  48. Spano L, Pompon M, Costantino P, van Slogteren GMS, Tempe J (1982) Identificationof T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291-304 

  49. Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J 32:775-787 

  50. Tanaka N (2008) Horizontal gene transfer in Agrobacterium: from Biology to Biotechnology, eds T. Tzfira and V. Citovsky (NewYork, NY: Springer), 623-647 

  51. Tang X, Liu G, Zhou J Xu T, Ren Q, You Q, Tian L, Xin X, Zhong Z, Liu B, Zheng X, Zhang D, Malzahn A, Gong Z, Qi Y, Zhang T, Zhang Y (2018) A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol 19:84-101 

  52. White FD, Garfinkel J, Huffman GA, Gordon MP, Nester EW (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348-350 

  53. Windels P, Taverniers I, Depicker A, van Bockstaele E, De Loose M (2001) Characterisation of the roundup ready soybean insert. Eur Food Res Technol 213:107-112 

  54. Wolt JD, Wang K, Sashital D, Lawrence-Dill CJ (2016) Achieving plant CRISPR targeting that limits off-target effects. Plant Genome 9: 1-8 

  55. Woo J W, Kim J, Kwon S I, Corvalan C, Cho S W, Kim H, Kim S G, Kim S T, Choe S, Kim J S (2015) DNA-free genome editing in plants with preassembled CRISPRCas9 ribonucleoproteins. Nat Biotechnol 33(11):1162-1164 

  56. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975-1983 

  57. Young J, Zastrow-Hayes G, Deschamps S, Svitashev S, Zaremba M, Acharya A, Paulraj S, Peterson-Burch B, Schwartz C, Djukanovic V, Lenderts B, Feigenbutz L, Wang L, Alarcon C, Siksnys V, May G, N. Chilcoat D, Kumar S (2019) CRISPR-Cas9 editing in maize: systematic evaluation of off-target activity and its relevance in crop improvement. Sci Rep 9:6729-6740 

  58. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797-807 

  59. Zhang Q, Xing HL, Wang ZP, Zhang HY, Yang F, Wang XC, Chen QJ (2018) Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol 96:445-456 

  60. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903-10914 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로